Advertisements
Advertisements
Question
`sqrt((1 + cos "A")/(1 - cos"A"))` = cosec A + cot A हे सिद्ध करा.
Solution
डावी बाजू = `sqrt((1 + cos "A")/(1 - cos"A"))`
= `sqrt((1 + cos "A")/(1 - cos "A") xx (1 + cos "A")/(1 + cos "A"))` ......[छेदाचे परिमेयकरण करून]
= `sqrt((1 + cos "A")^2/(1 - cos^2 "A"))`
= `sqrt((1 + cos "A")^2/(sin^2 "A")` ......`[(because sin^2"A" + cos^2"A" = 1),(therefore 1 - cos^2"A" = sin^2"A")]`
= `(1 + cos"A")/"sin A"`
= `1/"sin A" + "cos A"/"sin A"`
= cosec A + cot A
= उजवी बाजू
∴ `sqrt((1 + cos "A")/(1 - cos"A"))` = cosec A + cot A
APPEARS IN
RELATED QUESTIONS
`1/(secθ - tanθ)` = secθ + tanθ
tan4θ + tan2θ = sec4θ - sec2θ
जर sec θ + tan θ = `sqrt(3)`, तर secθ – tanθ ची किंमत काढण्यासाठी खालील कृती पूर्ण करा.
कृती: `square` = 1 + tan2θ ......[त्रि. नित्य समीकरण]
`square` – tan2θ = 1
(sec θ + tan θ) . (sec θ – tan θ) = `square`
`sqrt(3)*(sectheta - tan theta)` = 1
(sec θ – tan θ) = `square`
जर cos θ = `24/25`, तर sin θ = ?
जर tan θ + cot θ = 2, तर tan2θ + cot2θ = ?
sec2θ + cosec2θ = sec2θ × cosec2θ हे सिद्ध करा.
sec2A – cosec2A = `(2sin^2"A" - 1)/(sin^2"A"*cos^2"A")` हे सिद्ध करा.
2(sin6A + cos6A) – 3(sin4A + cos4A) + 1 = 0 हे सिद्ध करा.
जर cosec A – sin A = p आणि sec A – cos A = q, तर सिद्ध करा. `("p"^2"q")^(2/3) + ("pq"^2)^(2/3)` = 1
दाखवा की: `tanA/(1 + tan^2 A)^2 + cotA/(1 + cot^2A)^2` = sinA × cosA.