Advertisements
Advertisements
Question
जर sec θ + tan θ = `sqrt(3)`, तर secθ – tanθ ची किंमत काढण्यासाठी खालील कृती पूर्ण करा.
कृती: `square` = 1 + tan2θ ......[त्रि. नित्य समीकरण]
`square` – tan2θ = 1
(sec θ + tan θ) . (sec θ – tan θ) = `square`
`sqrt(3)*(sectheta - tan theta)` = 1
(sec θ – tan θ) = `square`
Solution
`underline(sec^2θ)` = 1 + tan2θ ......[त्रिकोणमितीय नित्यसमानता]
∴ `underline(sec^2θ) – tan^2θ = 1`
∴ (sec θ + tan θ) . (sec θ – tan θ) = 1
∴ `sqrt(3)*(sectheta - tan theta)` = 1
∴ (sec θ – tan θ) = `underline(1/sqrt(3))`
APPEARS IN
RELATED QUESTIONS
`(sin^2θ)/(cosθ) + cosθ = secθ`
(sec θ - cos θ)(cot θ + tan θ) = tan θ sec θ
`tanθ/(secθ - 1) = (tanθ + secθ + 1)/(tanθ + secθ - 1)`
`1/(1 - sinθ) + 1/(1 + sinθ)` = 2sec2θ
`(sin^2theta)/(cos theta) + cos theta` = sec θ हे सिद्ध करा.
cot θ + tan θ = cosec θ × sec θ, हे सिद्ध करण्यासाठी खालील कृती पूर्ण करा.
कृती:
डावी बाजू = `square`
= `square/sintheta + sintheta/costheta`
= `(cos^2theta + sin^2theta)/square`
= `1/(sintheta*costheta)` ......`[cos^2theta + sin^2theta = square]`
= `1/sintheta xx 1/square`
= `square`
= उजवी बाजू
`(1 + sintheta)/(1 - sin theta)` = (sec θ + tan θ)2 हे सिद्ध करा.
sin4A – cos4A = 1 – 2cos2A हे सिद्ध करा.
सिद्ध करा:
cotθ + tanθ = cosecθ × secθ
उकल:
डावी बाजू = cotθ + tanθ
= `cosθ/sinθ + sinθ/cosθ`
= `(square + square)/(sinθ xx cosθ)`
= `1/(sinθ xx cosθ)` ............... `square`
= `1/sinθ xx 1/square`
= cosecθ × secθ
= उजवी बाजू
∴ cotθ + tanθ = cosecθ × secθ
जर `1/sin^2θ - 1/cos^2θ-1/tan^2θ-1/cot^2θ-1/sec^2θ-1/("cosec"^2θ) = -3`, तर θ ची किमत काढा.