Advertisements
Advertisements
Question
`1/(1 - sinθ) + 1/(1 + sinθ)` = 2sec2θ
Solution
डावी बाजू = `1/(1 - sinθ) + 1/(1 + sinθ)`
= `((1 + sinθ) + (1 - sinθ))/((1 - sinθ)(1 + sinθ))`
= `(1 + sinθ + 1 - sinθ)/((1 - sinθ)(1 + sinθ))`
= `2/(1 - sin^2θ)`
= `2/cos^2θ` .....[∵ 1 - sin2θ = cos2θ]
= `2 xx 1/cos^2θ`
= 2sec2θ
= उजवी बाजू
∴ `1/(1 - sinθ) + 1/(1 + sinθ)` = 2sec2θ
APPEARS IN
RELATED QUESTIONS
जर sinθ = `11/61`, तर नित्यसमानतेचा उपयोग करून cosθ ची किंमत काढा.
जर secθ = `13/12` , तर इतर त्रिकोणमितीय गुणोत्तरांच्या किमती काढा.
tan4θ + tan2θ = sec4θ - sec2θ
`tanθ/(secθ + 1) = (secθ - 1)/tanθ`
खालील प्रश्नासाठी उत्तराचा योग्य पर्याय निवडा.
खालीलपैकी चुकीचे सूत्र कोणते?
`(sin^2theta)/(cos theta) + cos theta` = sec θ हे सिद्ध करा.
tan2θ – sin2θ = tan2θ × sin2θ हे सिद्ध करण्यासाठी खालील कृती पूर्ण करा.
कृती: डावी बाजू = `square`
= `square (1 - (sin^2theta)/(tan^2theta))`
= `tan^2theta (1 - square/((sin^2theta)/(cos^2theta)))`
= `tan^2theta (1 - (sin^2theta)/1 xx (cos^2theta)/square)`
= `tan^2theta (1 - square)`
= `tan^2theta xx square` .....[1 – cos2θ = sin2θ]
= उजवी बाजू
cot2θ – tan2θ = cosec2θ – sec2θ हे सिद्ध करा.
`(cot "A" + "cosec A" - 1)/(cot"A" - "cosec A" + 1) = (1 + cos "A")/"sin A"` हे सिद्ध करा.
sin θ (1 – tan θ) – cos θ (1 – cot θ) = cosec θ – sec θ हे सिद्ध करा.