Advertisements
Advertisements
Question
`(cot "A" + "cosec A" - 1)/(cot"A" - "cosec A" + 1) = (1 + cos "A")/"sin A"` हे सिद्ध करा.
Solution
डावी बाजू = `(cot "A" + "cosec A" - 1)/(cot"A" - "cosec A" + 1)`
= `(cot"A" + "cosec A" - ("cosec"^2"A" - cot^2"A"))/(cot"A" - "cosec A" + 1)` .....`[(because 1 + cot^2"A" = "cosec"^2"A"),(therefore "cosec"^2"A" - cot^2"A" = 1)]`
= `(cot"A" + "cosec A" - ("cosec A" + cot"A")("cosec A" - cot"A"))/(cot"A" - "cosec A" + 1)` .....[∵ a2 – b2 = (a + b) (a – b)]
= `((cot"A" + "cosec A")(1 - "cosec A" + cot "A"))/(cot"A" - "cosec A" + 1)`
= cot A + cosec A
= `"cos A"/"sin A" + 1/"sin A"`
= `(cos "A" + 1)/"sin A"`
= उजवी बाजू
∴ `(cot "A" + "cosec A" - 1)/(cot"A" - "cosec A" + 1) = (1 + cos "A")/"sin A"`
APPEARS IN
RELATED QUESTIONS
sinθ × cosecθ = किती?
`1/(1 - sinθ) + 1/(1 + sinθ)` = 2sec2θ
`tanθ/(secθ + 1) = (secθ - 1)/tanθ`
cosec θ.`sqrt(1 - cos^2theta) = 1` हे सिद्ध करा.
जर cos θ = `24/25`, तर sin θ = ?
`(cos^2theta)/(sintheta) + sintheta` = cosec θ हे सिद्ध करा.
`sec"A"/(tan "A" + cot "A")` = sin A हे सिद्ध करा.
`(sintheta + "cosec" theta)/sin theta` = 2 + cot2θ हे सिद्ध करा.
जर cos A = `(2sqrt("m"))/("m" + 1)`, असेल, तर सिद्ध करा cosec A = `("m" + 1)/("m" - 1)`
sin6A + cos6A = 1 – 3sin2A . cos2A हे सिद्ध करा.