Advertisements
Advertisements
Question
cosec θ.`sqrt(1 - cos^2theta) = 1` हे सिद्ध करा.
Solution
डावी बाजू = `"cosec" θ xx sqrt(1 - cos^2theta)`
= `"cosec" θ xx sqrt(sin^2theta)` ......`[(because sin^2theta + cos^2theta = 1),(therefore 1 - cos^2theta = sin^2theta)]`
= cosec θ × sin θ
= 1 ......[∵ sin θ × cosec θ = 1]
= उजवी बाजू
APPEARS IN
RELATED QUESTIONS
cos2θ(1 + tan2θ) = 1
cot2θ - tan2θ = cosec2θ - sec2θ
`(tan^3θ - 1)/(tanθ - 1)` = sec2θ + tanθ
खालील प्रश्नासाठी उत्तराचा योग्य पर्याय निवडा.
खालीलपैकी चुकीचे सूत्र कोणते?
`(cos^2theta)/(sintheta) + sintheta` = cosec θ हे सिद्ध करा.
`sqrt((1 + cos "A")/(1 - cos"A"))` = cosec A + cot A हे सिद्ध करा.
`(1 + sec "A")/"sec A" = (sin^2"A")/(1 - cos"A")` हे सिद्ध करा.
sin θ (1 – tan θ) – cos θ (1 – cot θ) = cosec θ – sec θ हे सिद्ध करा.
जर tan θ – sin2θ = cos2θ, तर sin2θ = `1/2` हे दाखवा.
जर `1/sin^2θ - 1/cos^2θ-1/tan^2θ-1/cot^2θ-1/sec^2θ-1/("cosec"^2θ) = -3`, तर θ ची किमत काढा.