Advertisements
Advertisements
Question
`(1 + sec "A")/"sec A" = (sin^2"A")/(1 - cos"A")` हे सिद्ध करा.
Solution
डावी बाजू = `(1 + sec "A")/"sec A"`
= `1/"sec A" + "sec A"/"sec A"`
= cos A + 1
= `(1 + cos "A") xx (1 - cos"A")/(1 - cos"A")`
= `(1 - cos^2"A")/(1 - cos"A")`
= `(sin^2"A")/(1 - cos"A")` .......`[(because sin^2"A" + cos^2"A" = 1),(therefore 1 - cos^2"A" = sin^2"A")]`
= उजवी बाजू
∴ `(1 + sec "A")/"sec A" = (sin^2"A")/(1 - cos"A")`
APPEARS IN
RELATED QUESTIONS
cot θ + tan θ = cosec θ sec θ
`tanθ/(secθ - 1) = (tanθ + secθ + 1)/(tanθ + secθ - 1)`
cot2θ - tan2θ = cosec2θ - sec2θ
`(tan^3θ - 1)/(tanθ - 1)` = sec2θ + tanθ
cosec θ.`sqrt(1 - cos^2theta) = 1` हे सिद्ध करा.
cot2θ × sec2θ = cot2θ + 1 हे सिद्ध करा.
`(cot "A" + "cosec A" - 1)/(cot"A" - "cosec A" + 1) = (1 + cos "A")/"sin A"` हे सिद्ध करा.
जर cosec A – sin A = p आणि sec A – cos A = q, तर सिद्ध करा. `("p"^2"q")^(2/3) + ("pq"^2)^(2/3)` = 1
(sin A + cos A) (cosec A – sec A) = cosec A . sec A – 2 tan A हे सिद्ध करा.
θ चे निरसन करा:
जर x = r cosθ आणि y = r sinθ