Advertisements
Advertisements
Question
`(tan^3θ - 1)/(tanθ - 1)` = sec2θ + tanθ
Solution
डावी बाजू = `(tan^3θ - 1)/(tanθ - 1) = (tan^3θ - 1^3)/(tanθ - 1)`
= `((tanθ - 1)(tan^2θ + tanθ + 1))/((tanθ - 1))` ......…[∵ a3 – b3 = (a - b) (a2 + ab + b2)]
= tan2θ + tan θ + 1
= (1 + tan2θ) + tan θ
= sec2θ + tan θ ......…[∵ 1 + tan2θ = sec2θ]
= उजवी बाजू
∴ `(tan^3θ - 1)/(tanθ - 1)` = sec2θ + tanθ
APPEARS IN
RELATED QUESTIONS
जर secθ = `13/12` , तर इतर त्रिकोणमितीय गुणोत्तरांच्या किमती काढा.
sec θ(1 - sin θ) (sec θ + tan θ) = 1
tan4θ + tan2θ = sec4θ - sec2θ
sec6x - tan6x = 1 + 3sec2x × tan2x
cosec θ.`sqrt(1 - cos^2theta) = 1` हे सिद्ध करा.
जर cos θ = `24/25`, तर sin θ = ?
`sintheta/(sectheta+ 1) +sintheta/(sectheta - 1)` = 2 cot θ हे सिद्ध करा.
`(sintheta + "cosec" theta)/sin theta` = 2 + cot2θ हे सिद्ध करा.
`(1 + sec "A")/"sec A" = (sin^2"A")/(1 - cos"A")` हे सिद्ध करा.
`(cot "A" + "cosec A" - 1)/(cot"A" - "cosec A" + 1) = (1 + cos "A")/"sin A"` हे सिद्ध करा.