Advertisements
Advertisements
Question
जर `1/sin^2θ - 1/cos^2θ-1/tan^2θ-1/cot^2θ-1/sec^2θ-1/("cosec"^2θ) = -3`, तर θ ची किमत काढा.
Solution
`1/sin^2θ - 1/cos^2θ - 1/tan^2θ - 1/cot^2θ - 1/sec^2θ - 1/("cosec"^2θ) = -3`
∴ `1/sin^2θ - 1/cos^2θ - 1/(((sin^2θ)/(cos^2θ))) - 1/(((cos^2θ)/(sin^2θ))) - cos^2θ - sin^2θ = -3`
∴ `1/sin^2θ - 1/cos^2θ - (cos^2θ)/(sin^2θ) - (sin^2θ)/(cos^2θ) - cos^2θ - sin^2θ = -3`
∴ `1/sin^2θ - (cos^2θ)/(sin^2θ) - 1/cos^2θ - (sin^2θ)/(cos^2θ) - (cos^2θ + sin^2θ) = -3`
∴ `(1 - cos^2θ)/(sin^2θ) - (1 + sin^2θ)/(cos^2θ) - 1 = -3` ...(∵ sin2θ + cos2θ = 1)
∴ `sin^2θ/sin^2θ - (1 + sin^2θ)/cos^2θ - 1 = -3` ...(∵ 1 − cos2θ = sin2θ)`
∴ `1 - (1 + sin^2θ)/cos^2θ - 1 = -3`
∴ `(1 + sin^2θ)/(1 - sin^2θ) = -3`
∴ `(1 + sin^2θ)/(1 - sin^2θ) = 3` ...(दोन्ही बाजूंना −1 ने गुणून)
∴ 1 + sin2θ = 3 − 3sin2θ
∴ sin2θ + 3 sin2θ = 3 − 1
∴ 4sin2θ = 2
∴ `sin^2θ = 2/4` ...(दोन्ही बाजूंना 4 ने गुणून)
∴ `sin^2θ = 1/2`
∴`sinθ = 1/sqrt2` ...(दोन्ही बाजूंचे वर्गमूळ घेऊन)
∴ θ = 45°
APPEARS IN
RELATED QUESTIONS
cot θ + tan θ = cosec θ sec θ
sec4θ - cos4θ = 1 - 2cos2θ
secθ + tanθ = `cosθ/(1 - sinθ)`
`tanA/(1 + tan^2A)^2 + cotA/(1 + cot^2A)^2` = sin A cos A
sec2θ + cosec2θ = sec2θ × cosec2θ
खालील प्रश्नासाठी उत्तराचा योग्य पर्याय निवडा.
sin2θ + sin2(90 – θ) = ?
cosec θ.`sqrt(1 - cos^2theta) = 1` हे सिद्ध करा.
जर sec θ = `41/40`, तर sin θ, cot θ, cosec θ च्या किमती काढा.
`sec"A"/(tan "A" + cot "A")` = sin A हे सिद्ध करा.
`(1 + sec "A")/"sec A" = (sin^2"A")/(1 - cos"A")` हे सिद्ध करा.