Advertisements
Advertisements
Question
जर sec θ = `41/40`, तर sin θ, cot θ, cosec θ च्या किमती काढा.
Solution
sec θ = `41/40` ......[दिलेले]
∴ cos θ = `1/sectheta = 1/(41/40)`
∴ cos θ = `40/41`
आपल्याला माहीत आहे, की
sin2θ + cos2θ = 1
∴ `sin^2theta + (40/41)^2` = 1
∴ `sin^2theta + 1600/1681` = 1
∴ sin2θ = `1 - 1600/1681`
∴ sin2θ = `(1681- 1600)/1681`
∴ sin2θ = `81/1681`
∴ sin θ = `9/41` .......[दोन्ही बाजूंचे वर्गमूळ घेऊन]]
आता, cosec θ = `1/sintheta`
= `1/((9/41))`
= `41/9`
cot θ = `costheta/sintheta`
= `((40/41))/((9/41))`
= `40/9`
∴ sin θ = `9/41`, cot θ = `40/9`, cosec θ = `41/9`
APPEARS IN
RELATED QUESTIONS
(sec θ - cos θ)(cot θ + tan θ) = tan θ sec θ
`tanθ/(secθ - 1) = (tanθ + secθ + 1)/(tanθ + secθ - 1)`
1 + tan2θ = किती?
tan4θ + tan2θ = sec4θ - sec2θ
`(sin θ - cos θ + 1)/(sin θ + cos θ - 1) = 1/(sec θ - tan θ)`
जर 1 – cos2θ = `1/4`, तर θ = ?
जर tan θ + cot θ = 2, तर tan2θ + cot2θ = ?
`"tan A"/"cot A" = (sec^2"A")/("cosec"^2"A")` हे सिद्ध करा.
`(cot "A" + "cosec A" - 1)/(cot"A" - "cosec A" + 1) = (1 + cos "A")/"sin A"` हे सिद्ध करा.
sin6A + cos6A = 1 – 3sin2A . cos2A हे सिद्ध करा.