Advertisements
Advertisements
Question
cot θ + tan θ = cosec θ × sec θ, हे सिद्ध करण्यासाठी खालील कृती पूर्ण करा.
कृती:
डावी बाजू = `square`
= `square/sintheta + sintheta/costheta`
= `(cos^2theta + sin^2theta)/square`
= `1/(sintheta*costheta)` ......`[cos^2theta + sin^2theta = square]`
= `1/sintheta xx 1/square`
= `square`
= उजवी बाजू
Solution
डावी बाजू = cot θ + tan θ
= `bb(costheta)/sintheta + sintheta/costheta`
= `(cos^2theta + sin^2theta)/bb((sintheta*costheta))`
= `1/(sintheta*costheta)` ......[cos2θ + sin2θ = 1]
= `1/sintheta xx 1/bb(costheta)`
= cosecθ × secθ
= उजवी बाजू
APPEARS IN
RELATED QUESTIONS
जर sinθ = `11/61`, तर नित्यसमानतेचा उपयोग करून cosθ ची किंमत काढा.
(sec θ + tan θ) . (sec θ – tan θ) = ?
cot2θ × sec2θ = cot2θ + 1 हे सिद्ध करा.
sin4A – cos4A = 1 – 2cos2A हे सिद्ध करण्यासाठी खालील कृती पूर्ण करा.
कृती: डावी बाजू = `square`
= (sin2A + cos2A) `(square)`
= `1 (square)` .....`[sin^2"A" + square = 1]`
= `square` – cos2A .....[sin2A = 1 – cos2A]
= `square`
= उजवी बाजू
`sec"A"/(tan "A" + cot "A")` = sin A हे सिद्ध करा.
sec2θ – cos2θ = tan2θ + sin2θ हे सिद्ध करा.
sin2A . tan A + cos2A . cot A + 2 sin A . cos A = tan A + cot A हे सिद्ध करा.
sin θ (1 – tan θ) – cos θ (1 – cot θ) = cosec θ – sec θ हे सिद्ध करा.
जर cos A + cos2A = 1, तर sin2A + sin4A = ?
सिद्ध करा:
cotθ + tanθ = cosecθ × secθ
उकल:
डावी बाजू = cotθ + tanθ
= `cosθ/sinθ + sinθ/cosθ`
= `(square + square)/(sinθ xx cosθ)`
= `1/(sinθ xx cosθ)` ............... `square`
= `1/sinθ xx 1/square`
= cosecθ × secθ
= उजवी बाजू
∴ cotθ + tanθ = cosecθ × secθ