Advertisements
Advertisements
प्रश्न
cot θ + tan θ = cosec θ × sec θ, हे सिद्ध करण्यासाठी खालील कृती पूर्ण करा.
कृती:
डावी बाजू = `square`
= `square/sintheta + sintheta/costheta`
= `(cos^2theta + sin^2theta)/square`
= `1/(sintheta*costheta)` ......`[cos^2theta + sin^2theta = square]`
= `1/sintheta xx 1/square`
= `square`
= उजवी बाजू
उत्तर
डावी बाजू = cot θ + tan θ
= `bb(costheta)/sintheta + sintheta/costheta`
= `(cos^2theta + sin^2theta)/bb((sintheta*costheta))`
= `1/(sintheta*costheta)` ......[cos2θ + sin2θ = 1]
= `1/sintheta xx 1/bb(costheta)`
= cosecθ × secθ
= उजवी बाजू
APPEARS IN
संबंधित प्रश्न
(sec θ - cos θ)(cot θ + tan θ) = tan θ sec θ
secθ + tanθ = `cosθ/(1 - sinθ)`
1 + tan2θ = किती?
sec θ(1 - sin θ) (sec θ + tan θ) = 1
(sec θ + tan θ) (1 - sin θ) = cos θ
`(tan^3θ - 1)/(tanθ - 1)` = sec2θ + tanθ
खालील प्रश्नासाठी उत्तराचा योग्य पर्याय निवडा.
sin2θ + sin2(90 – θ) = ?
खालील प्रश्नासाठी उत्तराचा योग्य पर्याय निवडा.
`(1 + cot^2"A")/(1 + tan^2"A")` = ?
cot2θ – tan2θ = cosec2θ – sec2θ हे सिद्ध करा.
2(sin6A + cos6A) – 3(sin4A + cos4A) + 1 = 0 हे सिद्ध करा.