Advertisements
Advertisements
प्रश्न
secθ + tanθ = `cosθ/(1 - sinθ)`
उत्तर
डावी बाजू = secθ + tanθ
= `1/cosθ + sinθ/cosθ`
= `(1 + sinθ)/cosθ`
= `(1 + sinθ)/(cosθ) xx (1 - sinθ)/(1 - sinθ)` ....[अंशाचे परिमेयकरण करून]
= `(1^2 - sin^2θ)/(cosθ(1 - sinθ)) = (1 - sin^2θ)/(cosθ(1 - sinθ))`
= `(cos^2θ)/(cosθ(1 - sinθ))` .....`[(∵ sin^2θ + cos^2θ = 1), (∴ 1 - sin^2θ = cos^2θ)]`
= `cosθ/(1 - sinθ)` = उजवी बाजू
∴ secθ + tanθ = `cosθ/(1 - sinθ)`
APPEARS IN
संबंधित प्रश्न
cot θ + tan θ = cosec θ sec θ
sec4θ - cos4θ = 1 - 2cos2θ
1 + tan2θ = किती?
`(sin θ - cos θ + 1)/(sin θ + cos θ - 1) = 1/(sec θ - tan θ)`
खालील प्रश्नासाठी उत्तराचा योग्य पर्याय निवडा.
`(1 + cot^2"A")/(1 + tan^2"A")` = ?
`(sin^2theta)/(cos theta) + cos theta` = sec θ हे सिद्ध करा.
`sqrt((1 + cos "A")/(1 - cos"A"))` = cosec A + cot A हे सिद्ध करा.
जर cos A = `(2sqrt("m"))/("m" + 1)`, असेल, तर सिद्ध करा cosec A = `("m" + 1)/("m" - 1)`
जर cosec A – sin A = p आणि sec A – cos A = q, तर सिद्ध करा. `("p"^2"q")^(2/3) + ("pq"^2)^(2/3)` = 1
(1 – cos2A) . sec2B + tan2B (1 – sin2A) = sin2A + tan2B हे सिद्ध करा.