Advertisements
Advertisements
प्रश्न
cot θ + tan θ = cosec θ sec θ
उत्तर
डावी बाजू = cot θ + tan θ
= `cos θ/sin θ + sin θ/cos θ`
= `(cos^2 θ + sin^2 θ)/(sin θcos θ)`
= `1/(sin θcos θ)` .....[∵ sin2θ + cos2θ = 1]
= `1/sinθ . 1/cosθ`
= cosec θ . sec θ
= उजवी बाजू
∴ cot θ + tan θ = cosec θ sec θ
APPEARS IN
संबंधित प्रश्न
`(sin^2θ)/(cosθ) + cosθ = secθ`
`1/(secθ - tanθ)` = secθ + tanθ
`tanA/(1 + tan^2A)^2 + cotA/(1 + cot^2A)^2` = sin A cos A
cosec θ.`sqrt(1 - cos^2theta) = 1` हे सिद्ध करा.
जर 3 sin θ = 4 cos θ, तर sec θ = ?
sec2θ − cos2θ = tan2θ + sin2θ हे सिद्ध करा.
sin θ (1 – tan θ) – cos θ (1 – cot θ) = cosec θ – sec θ हे सिद्ध करा.
`"cot A"/(1 - tan "A") + "tan A"/(1 - cot"A")` = 1 + tan A + cot A = sec A . cosec A + 1 हे सिद्ध करा.
दाखवा की: `tanA/(1 + tan^2 A)^2 + cotA/(1 + cot^2A)^2` = sinA × cosA.
जर `1/sin^2θ - 1/cos^2θ-1/tan^2θ-1/cot^2θ-1/sec^2θ-1/("cosec"^2θ) = -3`, तर θ ची किमत काढा.