Advertisements
Advertisements
Question
sin6A + cos6A = 1 – 3sin2A . cos2A हे सिद्ध करा.
Solution
डावी बाजू = sin6A + cos6A
= (sin2A)3 + (cos2A)3
= (1 – cos2A)3 + (cos2A)3 ......`[(because sin^2"A" + cos^2"A" = 1),(therefore 1 - cos^2"A" = sin^2A")]`
= 1 – 3cos2A + 3(cos2A)2 – (cos2A)3 + cos6A ......[∵ (a – b)3 = a3 – 3a2b + 3ab2 – b3]
= 1 – 3 cos2A(1 – cos2A) – cos6A + cos6A
= 1 – 3 cos2A sin2A
= उजवी बाजू
∴ sin6A + cos6A = 1 – 3sin2A . cos2A
APPEARS IN
RELATED QUESTIONS
cot θ + tan θ = cosec θ sec θ
`1/(secθ - tanθ)` = secθ + tanθ
sec4θ - cos4θ = 1 - 2cos2θ
cosec θ.`sqrt(1 - cos^2theta) = 1` हे सिद्ध करा.
जर sec θ + tan θ = `sqrt(3)`, तर secθ – tanθ ची किंमत काढण्यासाठी खालील कृती पूर्ण करा.
कृती: `square` = 1 + tan2θ ......[त्रि. नित्य समीकरण]
`square` – tan2θ = 1
(sec θ + tan θ) . (sec θ – tan θ) = `square`
`sqrt(3)*(sectheta - tan theta)` = 1
(sec θ – tan θ) = `square`
`"tan A"/"cot A" = (sec^2"A")/("cosec"^2"A")` हे सिद्ध करा.
`costheta/(1 + sintheta) = (1 - sintheta)/(costheta)` हे सिद्ध करा.
जर tan θ = `7/24`, तर cos θ ची किंमत काढण्यासाठी खालील कृती पूर्ण करा.
कृती: sec2θ = 1 + `square` ......[त्रि. नित्य समीकरण]
sec2θ = 1 + `square^2`
sec2θ = 1 + `square/576`
sec2θ = `square/576`
sec θ = `square`
cos θ = `square` .......`[cos theta = 1/sectheta]`
जर sec θ = `41/40`, तर sin θ, cot θ, cosec θ च्या किमती काढा.
`(cot "A" + "cosec A" - 1)/(cot"A" - "cosec A" + 1) = (1 + cos "A")/"sin A"` हे सिद्ध करा.