Advertisements
Advertisements
Question
sec4θ - cos4θ = 1 - 2cos2θ
Solution
डावी बाजू = sec4θ - cos4θ
= (sec2θ)2 – (cos2θ)2
= (sec2θ + cos2θ) (sec2θ – cos2θ) ....[∵ a2 – b2 = (a + b)(a – b)]
`= ((1 + cos^4 theta)(1- cos^4 theta))/(cos^4 theta)`
= `(1 + cos^4 theta)(1- cos^4 theta) (1 + cos^2 theta)/cos^4 theta`
Thus the solution would be not coming equal to RHS.
The correct question would be sin4 θ in place of sec4θ.
On solving this question we get,
= (sin2θ)2 – (cos2θ)2
= (sin2θ + cos2θ) (sin2θ – cos2θ) ....[∵ a2 – b2 = (a + b)(a – b)]
= (1) (sin2θ – cos2θ) ....[∵ sin2θ + cos2θ = 1]
= sin2θ – cos2θ
= (1 - cos2θ) - cos2θ ....[∵ sin2θ = 1 - cos2θ]
= 1 - 2cos2θ = उजवी बाजू
∴ sin4 θ - cos4θ = 1 - 2 cos2θ
APPEARS IN
RELATED QUESTIONS
sinθ × cosecθ = किती?
sec2θ + cosec2θ = sec2θ × cosec2θ
खालील प्रश्नासाठी उत्तराचा योग्य पर्याय निवडा.
sec2θ – tan2θ = ?
खालील प्रश्नासाठी उत्तराचा योग्य पर्याय निवडा.
sin2θ + sin2(90 – θ) = ?
`(sintheta + "cosec" theta)/sin theta` = 2 + cot2θ हे सिद्ध करा.
sin2A . tan A + cos2A . cot A + 2 sin A . cos A = tan A + cot A हे सिद्ध करा.
`"cot A"/(1 - tan "A") + "tan A"/(1 - cot"A")` = 1 + tan A + cot A = sec A . cosec A + 1 हे सिद्ध करा.
जर cos A + cos2A = 1, तर sin2A + sin4A = ?
जर cosec A – sin A = p आणि sec A – cos A = q, तर सिद्ध करा. `("p"^2"q")^(2/3) + ("pq"^2)^(2/3)` = 1
cotθ + tanθ = cosecθ × secθ हे सिद्ध करण्यासाठी खालील कृती पूर्ण करा.
कृती:
डावी बाजू = cotθ + tanθ
= `costheta/sintheta + square/costheta`
= `(square + sin^2theta)/(sintheta xx costheta)`
= `1/(sintheta xx costheta)` ......`because square`
= `1/sintheta xx 1/costheta`
= `square xx sectheta`
डावी बाजू = उजवी बाजू