Advertisements
Advertisements
Question
cotθ + tanθ = cosecθ × secθ हे सिद्ध करण्यासाठी खालील कृती पूर्ण करा.
कृती:
डावी बाजू = cotθ + tanθ
= `costheta/sintheta + square/costheta`
= `(square + sin^2theta)/(sintheta xx costheta)`
= `1/(sintheta xx costheta)` ......`because square`
= `1/sintheta xx 1/costheta`
= `square xx sectheta`
डावी बाजू = उजवी बाजू
Solution
डावी बाजू = cotθ + tanθ
= `(costheta)/sintheta + bbsintheta/costheta`
= `(bb(cos^2theta) + sin^2theta)/(sintheta xx costheta)`
= `1/(sintheta xx costheta)` .....∵ [sin2θ + cos2θ = 1]
= `1/sintheta xx 1/(costheta)`
= cosecθ × secθ
डावी बाजू = उजवी बाजू.
APPEARS IN
RELATED QUESTIONS
जर tanθ = 2, तर इतर त्रिकोणमितीय गुणोत्तरांच्या किमती काढा
sec2θ + cosec2θ = sec2θ × cosec2θ
खालील प्रश्नासाठी उत्तराचा योग्य पर्याय निवडा.
sin2θ + sin2(90 – θ) = ?
जर tan θ + cot θ = 2, तर tan2θ + cot2θ = ?
`(1 + sintheta)/(1 - sin theta)` = (sec θ + tan θ)2 हे सिद्ध करा.
`sintheta/(sectheta+ 1) +sintheta/(sectheta - 1)` = 2 cot θ हे सिद्ध करा.
`sec"A"/(tan "A" + cot "A")` = sin A हे सिद्ध करा.
sec2A – cosec2A = `(2sin^2"A" - 1)/(sin^2"A"*cos^2"A")` हे सिद्ध करा.
जर tan θ – sin2θ = cos2θ, तर sin2θ = `1/2` हे दाखवा.
θ चे निरसन करा:
जर x = r cosθ आणि y = r sinθ