English

Sec2A – cosec2A = 2sin2A-1sin2A⋅cos2A हे सिद्ध करा. - Mathematics 2 - Geometry [गणित २ - भूमिती]

Advertisements
Advertisements

Question

sec2A – cosec2A = `(2sin^2"A" - 1)/(sin^2"A"*cos^2"A")` हे सिद्ध करा. 

Sum

Solution

डावी बाजू = sec2A – cosec2A

= `1/(cos^2"A") - 1/(sin^2"A")`

= `(sin^2"A" - cos^2"A")/(cos^2"A"*sin^2"A")`

= `(sin^2"A" - (1 - sin^2"A"))/(sin^2"A"*cos^2"A")` .....`[(because sin^2"A" + cos^2"A" = 1),(therefore 1  sin^2"A" = cos^2"A")]`

= `(sin^2"A" - 1 + sin^2"A")/(sin^2"A"*cos^2"A")`

= `(2sin^2"A" - 1)/(sin^2"A"*cos^2"A")`

= उजवी बाजू

∴ sec2A – cosec2A = `(2sin^2"A" - 1)/(sin^2"A"*cos^2"A")`

shaalaa.com
त्रिकोणमितीय नित्यसमानता
  Is there an error in this question or solution?
Chapter 6: त्रिकोणमिती - Q ४)

APPEARS IN

SCERT Maharashtra Geometry (Mathematics 2) [Marathi] 10 Standard SSC
Chapter 6 त्रिकोणमिती
Q ४) | Q २.

RELATED QUESTIONS

`1/(secθ - tanθ)` = secθ + tanθ


sec4θ - cos4θ = 1 - 2cos2θ 


`tanθ/(secθ - 1) = (tanθ + secθ + 1)/(tanθ + secθ - 1)`


जर secθ = `13/12` , तर इतर त्रिकोणमितीय गुणोत्तरांच्या किमती काढा. 


`(tan^3θ - 1)/(tanθ - 1)` = sec2θ + tanθ 


`(sin^2theta)/(cos theta) + cos theta` = sec θ हे सिद्ध करा.


जर sec θ = `41/40`, तर sin θ, cot θ, cosec θ च्या किमती काढा. 


cotθ + tanθ = cosecθ × secθ हे सिद्ध करण्यासाठी खालील कृती पूर्ण करा.

कृती:

डावी बाजू = cotθ + tanθ

= `costheta/sintheta + square/costheta`

= `(square + sin^2theta)/(sintheta xx costheta)`

= `1/(sintheta xx costheta)`     ......`because square`

= `1/sintheta xx 1/costheta`

= `square xx sectheta`

डावी बाजू = उजवी बाजू


सिद्ध करा:

cotθ + tanθ = cosecθ × secθ

उकल:

डावी बाजू = cotθ + tanθ

= `cosθ/sinθ + sinθ/cosθ`

= `(square + square)/(sinθ xx cosθ)`

= `1/(sinθ xx cosθ)` ............... `square`

= `1/sinθ xx 1/square`

= cosecθ × secθ

= उजवी बाजू

∴ cotθ + tanθ = cosecθ × secθ


sin2θ + cos2θ ची किंमत काढा.

उकलः

Δ ABC मध्ये, ∠ABC = 90°, ∠C = θ°

AB2 + BC2 = `square`   ...(पायथागोरसचे प्रमेय)

दोन्ही बाजूला AC2 ने भागून,

`"AB"^2/"AC"^2 + "BC"^2/"AC"^2 = "AC"^2/"AC"^2`

∴ `("AB"^2/"AC"^2) + ("BC"^2/"AC"^2) = 1`

परंतु `"AB"/"AC" = square  "आणि"  "BC"/"AC" = square`

∴ `sin^2 theta  + cos^2 theta = square` 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×