Advertisements
Advertisements
प्रश्न
sec2A – cosec2A = `(2sin^2"A" - 1)/(sin^2"A"*cos^2"A")` हे सिद्ध करा.
उत्तर
डावी बाजू = sec2A – cosec2A
= `1/(cos^2"A") - 1/(sin^2"A")`
= `(sin^2"A" - cos^2"A")/(cos^2"A"*sin^2"A")`
= `(sin^2"A" - (1 - sin^2"A"))/(sin^2"A"*cos^2"A")` .....`[(because sin^2"A" + cos^2"A" = 1),(therefore 1 sin^2"A" = cos^2"A")]`
= `(sin^2"A" - 1 + sin^2"A")/(sin^2"A"*cos^2"A")`
= `(2sin^2"A" - 1)/(sin^2"A"*cos^2"A")`
= उजवी बाजू
∴ sec2A – cosec2A = `(2sin^2"A" - 1)/(sin^2"A"*cos^2"A")`
APPEARS IN
संबंधित प्रश्न
`1/(secθ - tanθ)` = secθ + tanθ
(sec θ + tan θ) (1 - sin θ) = cos θ
खालील प्रश्नासाठी उत्तराचा योग्य पर्याय निवडा.
`(1 + cot^2"A")/(1 + tan^2"A")` = ?
cot2θ × sec2θ = cot2θ + 1 हे सिद्ध करा.
sin4A – cos4A = 1 – 2cos2A हे सिद्ध करण्यासाठी खालील कृती पूर्ण करा.
कृती: डावी बाजू = `square`
= (sin2A + cos2A) `(square)`
= `1 (square)` .....`[sin^2"A" + square = 1]`
= `square` – cos2A .....[sin2A = 1 – cos2A]
= `square`
= उजवी बाजू
`(1 + sintheta)/(1 - sin theta)` = (sec θ + tan θ)2 हे सिद्ध करा.
`(cot "A" + "cosec A" - 1)/(cot"A" - "cosec A" + 1) = (1 + cos "A")/"sin A"` हे सिद्ध करा.
2(sin6A + cos6A) – 3(sin4A + cos4A) + 1 = 0 हे सिद्ध करा.
`"cot A"/(1 - tan "A") + "tan A"/(1 - cot"A")` = 1 + tan A + cot A = sec A . cosec A + 1 हे सिद्ध करा.
जर `1/sin^2θ - 1/cos^2θ-1/tan^2θ-1/cot^2θ-1/sec^2θ-1/("cosec"^2θ) = -3`, तर θ ची किमत काढा.