Advertisements
Advertisements
प्रश्न
cotθ + tanθ = cosecθ × secθ हे सिद्ध करण्यासाठी खालील कृती पूर्ण करा.
कृती:
डावी बाजू = cotθ + tanθ
= `costheta/sintheta + square/costheta`
= `(square + sin^2theta)/(sintheta xx costheta)`
= `1/(sintheta xx costheta)` ......`because square`
= `1/sintheta xx 1/costheta`
= `square xx sectheta`
डावी बाजू = उजवी बाजू
उत्तर
डावी बाजू = cotθ + tanθ
= `(costheta)/sintheta + bbsintheta/costheta`
= `(bb(cos^2theta) + sin^2theta)/(sintheta xx costheta)`
= `1/(sintheta xx costheta)` .....∵ [sin2θ + cos2θ = 1]
= `1/sintheta xx 1/(costheta)`
= cosecθ × secθ
डावी बाजू = उजवी बाजू.
APPEARS IN
संबंधित प्रश्न
cot θ + tan θ = cosec θ sec θ
जर tanθ + `1/tanθ` = 2 तर दाखवा की `tan^2θ + 1/tan^2θ` = 2
खालील प्रश्नासाठी उत्तराचा योग्य पर्याय निवडा.
sin2θ + sin2(90 – θ) = ?
cosec θ.`sqrt(1 - cos^2theta) = 1` हे सिद्ध करा.
cot2θ × sec2θ = cot2θ + 1 हे सिद्ध करा.
cot θ + tan θ = cosec θ × sec θ, हे सिद्ध करण्यासाठी खालील कृती पूर्ण करा.
कृती:
डावी बाजू = `square`
= `square/sintheta + sintheta/costheta`
= `(cos^2theta + sin^2theta)/square`
= `1/(sintheta*costheta)` ......`[cos^2theta + sin^2theta = square]`
= `1/sintheta xx 1/square`
= `square`
= उजवी बाजू
`(tan(90 - theta) + cot(90 - theta))/("cosec" theta)` = sec θ हे सिद्ध करा.
`(1 + sec "A")/"sec A" = (sin^2"A")/(1 - cos"A")` हे सिद्ध करा.
sec2A – cosec2A = `(2sin^2"A" - 1)/(sin^2"A"*cos^2"A")` हे सिद्ध करा.
2(sin6A + cos6A) – 3(sin4A + cos4A) + 1 = 0 हे सिद्ध करा.