Advertisements
Advertisements
Question
`"cot A"/(1 - tan "A") + "tan A"/(1 - cot"A")` = 1 + tan A + cot A = sec A . cosec A + 1 हे सिद्ध करा.
Solution
`"cot A"/(1 - tan "A") + "tan A"/(1 - cot"A")`
= `((cos "A")/(sin "A"))/(1 - (sin "A")/(cos "A")) + ((sin "A")/(cos "A"))/(1 - (cos "A")/(sin "A"))`
= `((cos "A")/(sin "A"))/((cos "A" - sin "A")/(cos "A")) + ((sin "A")/(cos "A"))/((sin "A" - cos "A")/(sin "A"))`
= `"cos A"/"sin A" xx "cos A"/(cos "A" - sin "A") + "sin A"/"cos A" xx "sin A"/(sin "A" - cos "A")`
= `(cos^2"A")/(sin "A"(cos "A" - sin "A")) + (sin^2"A")/(cos"A"(sin"A" - cos"A"))`
= `1/(sin "A" - cos "A") ((-cos^3"A" + sin^3"A")/(sin"A" cos"A"))`
= `1/(sin"A" - cos"A")((sin^3"A" - cos^3"A")/(sin"A" cos"A"))`
= `1/(sin"A" - cos"A")xx ((sin"A" - cos"A")(sin^2"A" + sin"A" cos"A" + cos^2"A"))/(sin"A" cos"A")` ......[∵ a3 – b3 = (a – b)(a2 + ab + b2)]
= `(sin^2"A" +sin"A" cos"A" + cos^2"A")/(sin"A" cos"A"` ......(i)
= `(1 + sin"A" cos"A")/(sin"A" cos"A")` .....[∵ sin2A + cos2A = 1]
= `1/(sin"A" cos"A") + (sin"A" cos"A")/(sin"A" cos"A")`
= cosec A sec A + 1 .....(ii)
`"cot A"/(1 - tan "A") + "tan A"/(1 - cot "A")`
= `(sin^2"A" + sin"A" cos"A" + cos^2"A")/(sin"A" cos"A")` ......[(i) वरून]
= `(sin^2"A")/(sin"A" cos"A") + "sin A cos A"/"sin A cos A" + (cos^2"A")/"sin A cos A"`
= `"sin A"/"cos A" + 1 + "cos A"/"sin A"`
= tan A + 1 + cot A ......(iii)
(ii) आणि (iii) वरून,
`"cot A"/(1 - tan "A") + "tan A"/(1 - cot "A")` = 1 + tan A + cot A = sec A . cosec A + 1
APPEARS IN
RELATED QUESTIONS
cot θ + tan θ = cosec θ sec θ
`1/(secθ - tanθ)` = secθ + tanθ
(sec θ + tan θ) (1 - sin θ) = cos θ
cot2θ - tan2θ = cosec2θ - sec2θ
sec6x - tan6x = 1 + 3sec2x × tan2x
cosec θ.`sqrt(1 - cos^2theta) = 1` हे सिद्ध करा.
cot2θ – tan2θ = cosec2θ – sec2θ हे सिद्ध करा.
`sec"A"/(tan "A" + cot "A")` = sin A हे सिद्ध करा.
(1 – cos2A) . sec2B + tan2B (1 – sin2A) = sin2A + tan2B हे सिद्ध करा.
cotθ + tanθ = cosecθ × secθ हे सिद्ध करण्यासाठी खालील कृती पूर्ण करा.
कृती:
डावी बाजू = cotθ + tanθ
= `costheta/sintheta + square/costheta`
= `(square + sin^2theta)/(sintheta xx costheta)`
= `1/(sintheta xx costheta)` ......`because square`
= `1/sintheta xx 1/costheta`
= `square xx sectheta`
डावी बाजू = उजवी बाजू