Advertisements
Advertisements
प्रश्न
sin6A + cos6A = 1 – 3sin2A . cos2A हे सिद्ध करा.
उत्तर
डावी बाजू = sin6A + cos6A
= (sin2A)3 + (cos2A)3
= (1 – cos2A)3 + (cos2A)3 ......`[(because sin^2"A" + cos^2"A" = 1),(therefore 1 - cos^2"A" = sin^2A")]`
= 1 – 3cos2A + 3(cos2A)2 – (cos2A)3 + cos6A ......[∵ (a – b)3 = a3 – 3a2b + 3ab2 – b3]
= 1 – 3 cos2A(1 – cos2A) – cos6A + cos6A
= 1 – 3 cos2A sin2A
= उजवी बाजू
∴ sin6A + cos6A = 1 – 3sin2A . cos2A
APPEARS IN
संबंधित प्रश्न
`(sin^2θ)/(cosθ) + cosθ = secθ`
cot θ + tan θ = cosec θ sec θ
जर tanθ + `1/tanθ` = 2 तर दाखवा की `tan^2θ + 1/tan^2θ` = 2
sec6x - tan6x = 1 + 3sec2x × tan2x
`tanθ/(secθ + 1) = (secθ - 1)/tanθ`
`(tan^3θ - 1)/(tanθ - 1)` = sec2θ + tanθ
जर tan θ + cot θ = 2, तर tan2θ + cot2θ = ?
`(1 + sintheta)/(1 - sin theta)` = (sec θ + tan θ)2 हे सिद्ध करा.
`sqrt((1 + cos "A")/(1 - cos"A"))` = cosec A + cot A हे सिद्ध करा.
जर cos A = `(2sqrt("m"))/("m" + 1)`, असेल, तर सिद्ध करा cosec A = `("m" + 1)/("m" - 1)`