Advertisements
Advertisements
प्रश्न
`tanθ/(secθ + 1) = (secθ - 1)/tanθ`
उत्तर
डावी बाजू = `tanθ/(secθ + 1)`
= `tanθ/(secθ + 1) xx (secθ - 1)/(secθ - 1)` ..............[छेदाचे परिमेयकरण करून]
= `(tanθ(secθ - 1))/(sec^2θ - 1)`
= `(tanθ(secθ - 1))/(tan^2θ)` .....`[(∵ 1 + tan^2θ = sec^2θ), (∴ sec^2θ - 1 = tan^2θ)]`
= `(secθ - 1)/(tanθ)`
= उजवी बाजू
∴ `tanθ/(secθ + 1) = (secθ - 1)/tanθ`
APPEARS IN
संबंधित प्रश्न
`(sin^2θ)/(cosθ) + cosθ = secθ`
`sqrt((1 - sinθ)/(1 + sinθ))` = secθ - tanθ
(sec θ - cos θ)(cot θ + tan θ) = tan θ sec θ
sec4θ - cos4θ = 1 - 2cos2θ
`tanA/(1 + tan^2A)^2 + cotA/(1 + cot^2A)^2` = sin A cos A
sec4A(1 - sin4A) - 2tan2A = 1
tan4θ + tan2θ = sec4θ - sec2θ
खालील प्रश्नासाठी उत्तराचा योग्य पर्याय निवडा.
`(1 + cot^2"A")/(1 + tan^2"A")` = ?
cot2θ × sec2θ = cot2θ + 1 हे सिद्ध करा.
`"cot A"/(1 - tan "A") + "tan A"/(1 - cot"A")` = 1 + tan A + cot A = sec A . cosec A + 1 हे सिद्ध करा.