Advertisements
Advertisements
प्रश्न
जर tan θ + cot θ = 2, तर tan2θ + cot2θ = ?
उत्तर
tan θ + cot θ = 2 ....[दिलेले]
∴ (tan θ + cot θ)2 = 4 .....[दोन्ही बाजूंचा वर्ग करून]
∴ tan2θ + 2tan θ.cot θ + cot2θ = 4 ......[∵ (a + b)2 = a2 + 2ab + b2]
∴ tan2θ + 2(1) + cot2θ = 4 ......[∵ tan θ ⋅ cot θ = 1]
∴ tan2θ + cot2θ = 4 – 2
∴ tan2θ + cot2θ = 2
APPEARS IN
संबंधित प्रश्न
`1/(secθ - tanθ)` = secθ + tanθ
sec θ(1 - sin θ) (sec θ + tan θ) = 1
tan4θ + tan2θ = sec4θ - sec2θ
खालील प्रश्नासाठी उत्तराचा योग्य पर्याय निवडा.
`(1 + cot^2"A")/(1 + tan^2"A")` = ?
जर cos θ = `24/25`, तर sin θ = ?
sec2θ − cos2θ = tan2θ + sin2θ हे सिद्ध करा.
cot θ + tan θ = cosec θ × sec θ, हे सिद्ध करण्यासाठी खालील कृती पूर्ण करा.
कृती:
डावी बाजू = `square`
= `square/sintheta + sintheta/costheta`
= `(cos^2theta + sin^2theta)/square`
= `1/(sintheta*costheta)` ......`[cos^2theta + sin^2theta = square]`
= `1/sintheta xx 1/square`
= `square`
= उजवी बाजू
cot2θ – tan2θ = cosec2θ – sec2θ हे सिद्ध करा.
sec2θ – cos2θ = tan2θ + sin2θ हे सिद्ध करा.
जर `1/sin^2θ - 1/cos^2θ-1/tan^2θ-1/cot^2θ-1/sec^2θ-1/("cosec"^2θ) = -3`, तर θ ची किमत काढा.