Advertisements
Advertisements
प्रश्न
sin6A + cos6A = 1 – 3sin2A . cos2A हे सिद्ध करा.
उत्तर
डावी बाजू = sin6A + cos6A
= (sin2A)3 + (cos2A)3
= (1 – cos2A)3 + (cos2A)3 ......`[(because sin^2"A" + cos^2"A" = 1),(therefore 1 - cos^2"A" = sin^2A")]`
= 1 – 3cos2A + 3(cos2A)2 – (cos2A)3 + cos6A ......[∵ (a – b)3 = a3 – 3a2b + 3ab2 – b3]
= 1 – 3 cos2A(1 – cos2A) – cos6A + cos6A
= 1 – 3 cos2A sin2A
= उजवी बाजू
∴ sin6A + cos6A = 1 – 3sin2A . cos2A
APPEARS IN
संबंधित प्रश्न
`tanθ/(secθ + 1) = (secθ - 1)/tanθ`
जर cos θ = `24/25`, तर sin θ = ?
cot2θ × sec2θ = cot2θ + 1 हे सिद्ध करा.
`(cos^2theta)/(sintheta) + sintheta` = cosec θ हे सिद्ध करा.
sin2A . tan A + cos2A . cot A + 2 sin A . cos A = tan A + cot A हे सिद्ध करा.
जर cos A + cos2A = 1, तर sin2A + sin4A = ?
जर tan θ – sin2θ = cos2θ, तर sin2θ = `1/2` हे दाखवा.
(sin A + cos A) (cosec A – sec A) = cosec A . sec A – 2 tan A हे सिद्ध करा.
सिद्ध करा:
cotθ + tanθ = cosecθ × secθ
उकल:
डावी बाजू = cotθ + tanθ
= `cosθ/sinθ + sinθ/cosθ`
= `(square + square)/(sinθ xx cosθ)`
= `1/(sinθ xx cosθ)` ............... `square`
= `1/sinθ xx 1/square`
= cosecθ × secθ
= उजवी बाजू
∴ cotθ + tanθ = cosecθ × secθ
sin2θ + cos2θ ची किंमत काढा.
उकलः
Δ ABC मध्ये, ∠ABC = 90°, ∠C = θ°
AB2 + BC2 = `square` ...(पायथागोरसचे प्रमेय)
दोन्ही बाजूला AC2 ने भागून,
`"AB"^2/"AC"^2 + "BC"^2/"AC"^2 = "AC"^2/"AC"^2`
∴ `("AB"^2/"AC"^2) + ("BC"^2/"AC"^2) = 1`
परंतु `"AB"/"AC" = square "आणि" "BC"/"AC" = square`
∴ `sin^2 theta + cos^2 theta = square`