Advertisements
Advertisements
प्रश्न
`1/(1 - sinθ) + 1/(1 + sinθ)` = 2sec2θ
उत्तर
डावी बाजू = `1/(1 - sinθ) + 1/(1 + sinθ)`
= `((1 + sinθ) + (1 - sinθ))/((1 - sinθ)(1 + sinθ))`
= `(1 + sinθ + 1 - sinθ)/((1 - sinθ)(1 + sinθ))`
= `2/(1 - sin^2θ)`
= `2/cos^2θ` .....[∵ 1 - sin2θ = cos2θ]
= `2 xx 1/cos^2θ`
= 2sec2θ
= उजवी बाजू
∴ `1/(1 - sinθ) + 1/(1 + sinθ)` = 2sec2θ
APPEARS IN
संबंधित प्रश्न
(sec θ - cos θ)(cot θ + tan θ) = tan θ sec θ
secθ + tanθ = `cosθ/(1 - sinθ)`
sec4A(1 - sin4A) - 2tan2A = 1
`tanθ/(secθ + 1) = (secθ - 1)/tanθ`
`(sin θ - cos θ + 1)/(sin θ + cos θ - 1) = 1/(sec θ - tan θ)`
जर tan θ = `7/24`, तर cos θ ची किंमत काढण्यासाठी खालील कृती पूर्ण करा.
कृती: sec2θ = 1 + `square` ......[त्रि. नित्य समीकरण]
sec2θ = 1 + `square^2`
sec2θ = 1 + `square/576`
sec2θ = `square/576`
sec θ = `square`
cos θ = `square` .......`[cos theta = 1/sectheta]`
जर sec θ = `41/40`, तर sin θ, cot θ, cosec θ च्या किमती काढा.
`(sintheta + "cosec" theta)/sin theta` = 2 + cot2θ हे सिद्ध करा.
जर cos A + cos2A = 1, तर sin2A + sin4A = ?
सिद्ध करा:
cotθ + tanθ = cosecθ × secθ
उकल:
डावी बाजू = cotθ + tanθ
= `cosθ/sinθ + sinθ/cosθ`
= `(square + square)/(sinθ xx cosθ)`
= `1/(sinθ xx cosθ)` ............... `square`
= `1/sinθ xx 1/square`
= cosecθ × secθ
= उजवी बाजू
∴ cotθ + tanθ = cosecθ × secθ