Advertisements
Advertisements
प्रश्न
जर cos A + cos2A = 1, तर sin2A + sin4A = ?
उत्तर
cos A + cos2A = 1 ......[दिलेले]
∴ cos A = 1 – cos2A
∴ cos A = sin2A ......`[(because sin^2"A" + cos^2"A" = 1),(therefore 1 - cos^2"A" = sin^2"A")]`
∴ cos2A = sin4A .....[दोन्ही बाजूंचे वर्ग करून]
∴ 1 – sin2A = sin4A
∴ 1 = sin4A + sin2A
∴ sin2A + sin4A = 1
APPEARS IN
संबंधित प्रश्न
cot θ + tan θ = cosec θ sec θ
sec4θ - cos4θ = 1 - 2cos2θ
`tanθ/(secθ - 1) = (tanθ + secθ + 1)/(tanθ + secθ - 1)`
`tanθ/(secθ + 1) = (secθ - 1)/tanθ`
`(sin^2theta)/(cos theta) + cos theta` = sec θ हे सिद्ध करा.
tan2θ – sin2θ = tan2θ × sin2θ हे सिद्ध करण्यासाठी खालील कृती पूर्ण करा.
कृती: डावी बाजू = `square`
= `square (1 - (sin^2theta)/(tan^2theta))`
= `tan^2theta (1 - square/((sin^2theta)/(cos^2theta)))`
= `tan^2theta (1 - (sin^2theta)/1 xx (cos^2theta)/square)`
= `tan^2theta (1 - square)`
= `tan^2theta xx square` .....[1 – cos2θ = sin2θ]
= उजवी बाजू
`sqrt((1 + cos "A")/(1 - cos"A"))` = cosec A + cot A हे सिद्ध करा.
sin6A + cos6A = 1 – 3sin2A . cos2A हे सिद्ध करा.
cotθ + tanθ = cosecθ × secθ हे सिद्ध करण्यासाठी खालील कृती पूर्ण करा.
कृती:
डावी बाजू = cotθ + tanθ
= `costheta/sintheta + square/costheta`
= `(square + sin^2theta)/(sintheta xx costheta)`
= `1/(sintheta xx costheta)` ......`because square`
= `1/sintheta xx 1/costheta`
= `square xx sectheta`
डावी बाजू = उजवी बाजू
सिद्ध करा:
cotθ + tanθ = cosecθ × secθ
उकल:
डावी बाजू = cotθ + tanθ
= `cosθ/sinθ + sinθ/cosθ`
= `(square + square)/(sinθ xx cosθ)`
= `1/(sinθ xx cosθ)` ............... `square`
= `1/sinθ xx 1/square`
= cosecθ × secθ
= उजवी बाजू
∴ cotθ + tanθ = cosecθ × secθ