Advertisements
Advertisements
Question
खालील प्रश्नासाठी उत्तराचा योग्य पर्याय निवडा.
`(1 + cot^2"A")/(1 + tan^2"A")` = ?
Options
tan2A
sec2A
cosec2A
cot2A
Solution
`(1 + cot^2"A")/(1 + tan^2"A")` = cot2A
APPEARS IN
RELATED QUESTIONS
cos2θ(1 + tan2θ) = 1
(sec θ + tan θ) (1 - sin θ) = cos θ
sec2θ + cosec2θ = sec2θ × cosec2θ
`(tan^3θ - 1)/(tanθ - 1)` = sec2θ + tanθ
जर 1 – cos2θ = `1/4`, तर θ = ?
sec2θ + cosec2θ = sec2θ × cosec2θ हे सिद्ध करा.
sec2θ − cos2θ = tan2θ + sin2θ हे सिद्ध करा.
जर cos A = `(2sqrt("m"))/("m" + 1)`, असेल, तर सिद्ध करा cosec A = `("m" + 1)/("m" - 1)`
सिद्ध करा:
cotθ + tanθ = cosecθ × secθ
उकल:
डावी बाजू = cotθ + tanθ
= `cosθ/sinθ + sinθ/cosθ`
= `(square + square)/(sinθ xx cosθ)`
= `1/(sinθ xx cosθ)` ............... `square`
= `1/sinθ xx 1/square`
= cosecθ × secθ
= उजवी बाजू
∴ cotθ + tanθ = cosecθ × secθ
sin2θ + cos2θ ची किंमत काढा.
उकलः
Δ ABC मध्ये, ∠ABC = 90°, ∠C = θ°
AB2 + BC2 = `square` ...(पायथागोरसचे प्रमेय)
दोन्ही बाजूला AC2 ने भागून,
`"AB"^2/"AC"^2 + "BC"^2/"AC"^2 = "AC"^2/"AC"^2`
∴ `("AB"^2/"AC"^2) + ("BC"^2/"AC"^2) = 1`
परंतु `"AB"/"AC" = square "आणि" "BC"/"AC" = square`
∴ `sin^2 theta + cos^2 theta = square`