Advertisements
Advertisements
Question
sec2θ − cos2θ = tan2θ + sin2θ हे सिद्ध करा.
Solution
डावी बाजू = sec2θ − cos2θ
= 1 + tan2θ – cos2θ .......[∵ 1 + tan2θ = sec2θ]
= tan2θ + (1 – cos2θ)
= tan2θ + sin2θ ......`[(because sin^2theta +cos^2theta = 1),(therefore 1 - cos^2theta = sin^2theta)]`
= उजवी बाजू
∴ sec2θ − cos2θ = tan2θ + sin2θ
APPEARS IN
RELATED QUESTIONS
`(sin^2θ)/(cosθ) + cosθ = secθ`
(sec θ - cos θ)(cot θ + tan θ) = tan θ sec θ
sec4θ - cos4θ = 1 - 2cos2θ
जर tanθ + `1/tanθ` = 2 तर दाखवा की `tan^2θ + 1/tan^2θ` = 2
cot2θ - tan2θ = cosec2θ - sec2θ
`sec"A"/(tan "A" + cot "A")` = sin A हे सिद्ध करा.
sin2A . tan A + cos2A . cot A + 2 sin A . cos A = tan A + cot A हे सिद्ध करा.
`(cot "A" + "cosec A" - 1)/(cot"A" - "cosec A" + 1) = (1 + cos "A")/"sin A"` हे सिद्ध करा.
sin6A + cos6A = 1 – 3sin2A . cos2A हे सिद्ध करा.
`"cot A"/(1 - tan "A") + "tan A"/(1 - cot"A")` = 1 + tan A + cot A = sec A . cosec A + 1 हे सिद्ध करा.