Advertisements
Advertisements
प्रश्न
`sintheta/(sectheta+ 1) +sintheta/(sectheta - 1)` = 2 cot θ हे सिद्ध करा.
उत्तर
डावी बाजू = `sintheta/(sectheta+ 1) +sintheta/(sectheta - 1)`
= `sintheta/(1/costheta + 1) + sintheta/(1/costheta - 1`
= `sintheta/((1 + costheta)/costheta) + sintheta/((1 - costheta)/(costheta))`
= `(sintheta costheta)/(1 + costheta) + (sintheta costheta)/(1 - costheta)`
= `sin theta costheta (1 /(1 + costheta) + 1/(1 - costheta))`
= `sintheta costheta [(1 - costheta + 1 + costheta)/((1 + costheta)(1 - costheta))]`
= `sintheta costheta (2/(1 - cos^2theta))` ......[∵ (a + b)(a – b) = a2 – b2]
= `sintheta costheta xx 2/(sin^2theta)` .....`[(because sin^2theta + cos^2theta = 1),(therefore 1 - cos^2theta = sin^2theta)]`
= `2 xx (costheta)/(sintheta)`
= 2cot θ
= उजवी बाजू
∴ `sintheta/(sectheta+ 1) +sintheta/(sectheta - 1)` = 2 cot θ
APPEARS IN
संबंधित प्रश्न
1 + tan2θ = किती?
जर secθ = `13/12` , तर इतर त्रिकोणमितीय गुणोत्तरांच्या किमती काढा.
खालील प्रश्नासाठी उत्तराचा योग्य पर्याय निवडा.
sec2θ – tan2θ = ?
cot2θ × sec2θ = cot2θ + 1 हे सिद्ध करा.
sec2θ – cos2θ = tan2θ + sin2θ हे सिद्ध करा.
2(sin6A + cos6A) – 3(sin4A + cos4A) + 1 = 0 हे सिद्ध करा.
(sin A + cos A) (cosec A – sec A) = cosec A . sec A – 2 tan A हे सिद्ध करा.
cotθ + tanθ = cosecθ × secθ हे सिद्ध करण्यासाठी खालील कृती पूर्ण करा.
कृती:
डावी बाजू = cotθ + tanθ
= `costheta/sintheta + square/costheta`
= `(square + sin^2theta)/(sintheta xx costheta)`
= `1/(sintheta xx costheta)` ......`because square`
= `1/sintheta xx 1/costheta`
= `square xx sectheta`
डावी बाजू = उजवी बाजू
दाखवा की: `tanA/(1 + tan^2 A)^2 + cotA/(1 + cot^2A)^2` = sinA × cosA.
sin2θ + cos2θ ची किंमत काढा.
उकलः
Δ ABC मध्ये, ∠ABC = 90°, ∠C = θ°
AB2 + BC2 = `square` ...(पायथागोरसचे प्रमेय)
दोन्ही बाजूला AC2 ने भागून,
`"AB"^2/"AC"^2 + "BC"^2/"AC"^2 = "AC"^2/"AC"^2`
∴ `("AB"^2/"AC"^2) + ("BC"^2/"AC"^2) = 1`
परंतु `"AB"/"AC" = square "आणि" "BC"/"AC" = square`
∴ `sin^2 theta + cos^2 theta = square`