Advertisements
Advertisements
प्रश्न
`(tan(90 - theta) + cot(90 - theta))/("cosec" theta)` = sec θ हे सिद्ध करा.
उत्तर
डावी बाजू = `(tan(90 - theta) + cot(90 - theta))/("cosec" theta)`
= `1/("cosec" theta)(cottheta + tantheta)` .....`[(because tan(90 - theta) = cot theta),(cot(90 - theta) = tantheta)]`
= sin θ (cot θ + tan θ)
= `sintheta ((costheta)/(sintheta) + (sintheta)/(costheta))`
= `sintheta ((cos^2theta + sin^2theta)/(sintheta costheta))`
= `sintheta (1/(sintheta costheta))` ......[∵ sin2θ + cos2θ = 1]
= `1/costheta`
= sec θ
= उजवी बाजू
∴ `(tan(90 - theta) + cot(90 - theta))/("cosec" theta)` = sec θ
APPEARS IN
संबंधित प्रश्न
`(sin^2θ)/(cosθ) + cosθ = secθ`
sec4θ - cos4θ = 1 - 2cos2θ
sinθ × cosecθ = किती?
1 + tan2θ = किती?
जर tanθ = 2, तर इतर त्रिकोणमितीय गुणोत्तरांच्या किमती काढा
cot2θ - tan2θ = cosec2θ - sec2θ
cot2θ × sec2θ = cot2θ + 1 हे सिद्ध करा.
tan2θ – sin2θ = tan2θ × sin2θ हे सिद्ध करण्यासाठी खालील कृती पूर्ण करा.
कृती: डावी बाजू = `square`
= `square (1 - (sin^2theta)/(tan^2theta))`
= `tan^2theta (1 - square/((sin^2theta)/(cos^2theta)))`
= `tan^2theta (1 - (sin^2theta)/1 xx (cos^2theta)/square)`
= `tan^2theta (1 - square)`
= `tan^2theta xx square` .....[1 – cos2θ = sin2θ]
= उजवी बाजू
`(cot "A" + "cosec A" - 1)/(cot"A" - "cosec A" + 1) = (1 + cos "A")/"sin A"` हे सिद्ध करा.
sin6A + cos6A = 1 – 3sin2A . cos2A हे सिद्ध करा.