Advertisements
Advertisements
प्रश्न
sec2θ + cosec2θ = sec2θ × cosec2θ
उत्तर
डावी बाजू = sec2θ + cosec2θ
= `1/cos^2θ + 1/sin^2θ`
= `(sin^2θ + cos^2θ)/(cos^2θ . sin^2θ)`
= `1/(cos^2θ.sin^2θ)` .....[∵ sin2θ + cos2θ = 1]
= `1/cos^2θ xx 1/sin^2θ`
=`sec^2θ xx "cosec"^2θ`
= उजवी बाजू
∴ sec2θ + cosec2θ = sec2θ × cosec2θ
APPEARS IN
संबंधित प्रश्न
`sqrt((1 - sinθ)/(1 + sinθ))` = secθ - tanθ
जर tanθ = 2, तर इतर त्रिकोणमितीय गुणोत्तरांच्या किमती काढा
`tanθ/(secθ + 1) = (secθ - 1)/tanθ`
cos2θ . (1 + tan2θ) = 1 हे सिद्ध करण्यासाठी खालील कृती पूर्ण करा.
कृती: डावी बाजू = `square`
= `cos^2theta xx square` .........`[1 + tan^2theta = square]`
= `(cos theta xx square)^2`
= 12
= 1
= उजवी बाजू
`(cos^2theta)/(sintheta) + sintheta` = cosec θ हे सिद्ध करा.
जर sec θ = `41/40`, तर sin θ, cot θ, cosec θ च्या किमती काढा.
cot2θ – tan2θ = cosec2θ – sec2θ हे सिद्ध करा.
`sqrt((1 + cos "A")/(1 - cos"A"))` = cosec A + cot A हे सिद्ध करा.
sin4A – cos4A = 1 – 2cos2A हे सिद्ध करा.
sec2A – cosec2A = `(2sin^2"A" - 1)/(sin^2"A"*cos^2"A")` हे सिद्ध करा.