Advertisements
Advertisements
प्रश्न
Cubes A, B, C having edges 18 cm, 24 cm and 30 cm respectively are melted and moulded into a new cube D. Find the edge of the bigger cube D.
उत्तर
\[\text { We have the following: } \]
\[\text { Length of the edge of cube A = 18 cm }\]
\[\text { Length of the edge of cube B = 24 cm }\]
\[\text { Length of the edge of cube C = 30 cm }\]
\[\text { The given cubes are melted and moulded into a new cube D }. \]
\[\text { Hence, volume of cube D = volume of cube A + volume of cube B + volume of cube C }\]
\[ =\text { (side of cube A ) }^3 + \text { (side of cube B })^3 + \text { (side of cube C })^3 \]
\[ = {18}^3 + {24}^3 + {30}^3 \]
\[ = 5832 + 13824 + 27000\]
\[ = 46656 {cm}^3 \]
\[\text { Suppose that the edge of the new cube D = x }\]
\[ \Rightarrow x^3 = 46656\]
\[ \Rightarrow x = \sqrt[3]{46656} = 36 cm\]
\[ \therefore \text { The edge of the bigger cube D is 36 } cm .\]
APPEARS IN
संबंधित प्रश्न
Find the volume of a cube whose side is 1.5 dm .
Find the surface area of a cube whose edge is 3 cm.
Find the volume of a cube whose surface area is 150 m2 .
Side of a cube is 4.5 cm. Find the surface area of all vertical faces and total surface area of the cube.
The internal length, breadth, and height of a box are 30 cm, 24 cm, and 15 cm. Find the largest number of cubes which can be placed inside this box if the edge of each cube is
(i) 3 cm (ii) 4 cm (iii) 5 cm
When the length of each side of a cube is increased by 3 cm, its volume is increased by 2457 cm3. Find its side. How much will its volume decrease, if the length of each side of it is reduced by 20%?
The ratio between the lengths of the edges of two cubes is in the ratio 3: 2. Find the ratio between their:
(i) total surface area
(ii) volume.
Three metal cubes with edges 6cm, 8cm and 10cm respectively are melted together and formed into a single cube. Find the diagonal of this cube.
If the ratio of the sides of two cubes are 2 : 3, then ratio of their surface areas will be
The surface area of a cube formed by cutting a cuboid of dimensions 2 × 1 × 1 in 2 equal parts is 2 sq. units.