Advertisements
Advertisements
प्रश्न
Define the following term:
hypertonic solution
उत्तर
Hypertonic solution - The solution having higher osmotic pressure than other is called Hypertonic to other.
APPEARS IN
संबंधित प्रश्न
Determine the osmotic pressure of a solution prepared by dissolving 2.5 × 10−2 g of K2SO4 in 2L of water at 25°C, assuming that it is completely dissociated.
(R = 0.0821 L atm K−1 mol−1, Molar mass of K2SO4 = 174 g mol−1)
What happens when the external pressure applied becomes more than the osmotic pressure of solution?
Blood cells are isotonic with 0.9% sodium chloride solution. What happens if we place blood cells in a solution containing
(i) 1.2% sodium chloride solution?
(ii) 0.4% sodium chloride solution?
A solution containing 15 g urea (molar mass = 60 g mol–1) per litre of solution in water has the same osmotic pressure (isotonic) as a solution of glucose (molar mass = 180 g mol–1) in water. Calculate the mass of glucose present in one litre of its solution.
At 300 K, 36 g of glucose present in a litre of its solution has an osmotic pressure of 4.98 bar. If the osmotic pressure of the solution is 1.52 bars at the same temperature, what would be its concentration?
Determine the amount of CaCl2 (i = 2.47) dissolved in 2.5 litre of water such that its osmotic pressure is 0.75 atm at 27°C.
Determine the osmotic pressure of a solution prepared by dissolving 25 mg of K2SO4 in 2 liter of water at 25°C, assuming that it is completely dissociated.
Define osmotic pressure.
Define Semipermeable membrane
Calculate the mass of a compound (molar mass = 256 g mol−1) to be dissolved in 75 g of benzene to lower its freezing point by 0.48 K (Kf = 5.12 K kg mol−1).
Define the following term:
isotonic solution
Choose the most correct option.
A living cell contains a solution which is isotonic with 0.3 M sugar solution. What osmotic pressure develops when the cell is placed in 0.1 M KCl solution at body temperature?
Choose the most correct option.
The osmotic pressure of blood is 7.65 atm at 310 K. An aqueous solution of glucose isotonic with blood has the percentage (by volume)________.
Answer the following.
What are isotonic and hypertonic solutions?
Answer the following.
A solvent and its solution containing a nonvolatile solute are separated by a semipermeable membrane. Does the flow of solvent occur in both directions? Comment giving a reason.
Answer the following.
The osmotic pressure of CaCl2 and urea solutions of the same concentration at the same temperature are respectively 0.605 atm and 0.245 atm, calculate van’t Hoff factor for CaCl2.
Answer the following.
Explain reverse osmosis.
Answer the following.
How molar mass of a solute is determined by osmotic pressure measurement?
Explain the osmotic pressure of a solution with the help of a thistle tube.
Two solutions have different osmotic pressures. The solution of higher osmotic pressure is called ____________.
At constant temperature the osmotic pressure of a solution is ____________.
20 g of a substance were dissolved in 500 mL of water and the osmotic pressure of the solution was found to be 600 mm of mercury at 15°C. The molecular weight of the substance is:
The average osmotic pressure of human blood is 7.8 bar at 37°C. What is the concentration of an aqueous NaCl solution that could be used in the blood stream?
Osmotic pressure of a solution is 0.0821 atm at a temperature of 300 K. The concentration in moles/litre will be:
A solution containing 10 g per dm3 of urea (molar mass 60 g mol−1) is isotonic with 5% solution of non-volatile solute, MB of solute is:
At a given temperature, osmotic pressure of a concentrated solution of a substance ______.
Isotonic solutions must have the same:
(i) solute
(ii) density
(iii) elevation in boiling point
(iv) depression in freezing point
In isotonic solutions:
(i) Solute and solvent both are same.
(ii) Osmotic pressure is same.
(iii) Solute and solvent may or may not be same.
(iv) Solute is always same solvent may be different.
Give an example of a material used for making semipermeable membrane for carrying out reverse osmosis.
Match the items given in Column I and Column II.
Column I | Column II |
(i) Saturated solution | (a) Solution having same osmotic pressure at a given temperature as that of given solution. |
(ii) Binary solution | (b) A solution whose osmotic pressure is less than that of another. |
(iii) Isotonic solution | (c) Solution with two components. |
(iv) Hypotonic solution | (d) A solution which contains maximum amount of solute that can be dissolved in a given amount of solvent at a given temperature. |
(v) Solid solution | (e) A solution whose osmotic pressure is more than that of another. |
(vi) Hypertonic solution | (f) A solution in solid phase. |
How can you remove the hard calcium carbonate layer of the egg without damaging its semiprermiable membrane? Can this egg be inserted into a bottle with a narrow neck without distorting its shape? Explain the process involved.
Osmotic pressure of a solution increases if
Which of the following colligative property can provide molar mass of proteins (or polymers or colloids) with greatest precision?
Isotonic solutions have same
Blood cells retain their normal shape in solution which are
In Isotonic solution
The vapour pressure of water is 12.3 k pa at 300 k. Calculated the vapour pressure of molal solution in it.
Osmotic pressure of a solution containing 2 g dissolved protein per 300 cm3 of solution is 20 mm of Hg at 27°C. The molecular mass of protein is ______.
Derive an expression to calculate molar mass of non-volatile solute by osmotic pressure measurement.
Assertion (A) : Osmotic pressure is a colligative property.
Reason (R) : Osmotic pressure is proportional to the molality.
Determine the osmotic pressure of a solution prepared by dissolving 2.32 × 10−2 g of K2SO4 in 2L of solution at 25°C assuming that K2SO4 is completely dissociated.
(R = 0.082 L atm K−1 mol, Molar mass K2SO4 = 174 g mol−1)
A solution containing 10 g glucose has osmotic pressure 3.84 atm. If 10 g more glucose is added to the same solution, what will be its osmotic pressure? (Temperature remains constant)
Prove that: M2 = `(W_2RT)/(πV)`.
Arrange the following solutions in the order of increasing osmotic pressure (π) assuming complete ionization.
- 0.5M Li2 SO4
- 0.5M KCl
- 0.5M Al2 (SO4)3
- 0.1 M BaCl2
Define reverse osmosis.