मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Derive an expression to calculate molar mass of non-volatile solute by osmotic pressure measurement. - Chemistry

Advertisements
Advertisements

प्रश्न

Derive an expression to calculate molar mass of non-volatile solute by osmotic pressure measurement.

टीपा लिहा

उत्तर

For very dilute solution

Where π = `(n_2RT)/V`

π = Osmotic Pressure

n2 = Number of moles of solute

R = Gas constant

T = Absolute temperature

V = Volume of solution

n2 = `(W_2 ("Mass of solute"))/(M_2 ("Molar mass of solution"))`

M2 = `(W_2RT)/(πV)`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2021-2022 (March) Set 1

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Determine the osmotic pressure of a solution prepared by dissolving 2.5 × 10−2 g of K2SO4 in 2L of water at 25°C, assuming that it is completely dissociated.

(R = 0.0821 L atm K−1 mol−1, Molar mass of K2SO4 = 174 g mol−1)


Which of the following is not a colligative property?


Calculate the osmotic pressure in pascals exerted by a solution prepared by dissolving 1.0 g of polymer of molar mass 185,000 in 450 mL of water at 37°C.


Determine the osmotic pressure of a solution prepared by dissolving 25 mg of K2SO4 in 2 liter of water at 25°C, assuming that it is completely dissociated.


Define osmotic pressure.


Which of the following 0.1 M will aqueous solutions exert highest osmotic pressure?

(a) `Al_2(SO_4)_3`

(b) `Na_2SO_4`

(c) `MgCl_2`

(d) KCl


Define Semipermeable membrane


Calculate the mass of NaCl (molar mass = 58.5 g mol−1) to be dissolved in 37.2 g of water to lower the freezing point by 2°C, assuming that NaCl undergoes complete dissociation. (Kf for water = 1.86 K kg mol−1)


Calculate the mass of a compound (molar mass = 256 g mol−1) to be dissolved in 75 g of benzene to lower its freezing point by 0.48 K (Kf = 5.12 K kg mol−1).


Define the following term:
hypotonic solution


Choose the most correct option.

In calculating osmotic pressure the concentration of solute is expressed in _______.


Answer the following in one or two sentences.

A solution concentration is expressed in molarity and not in molality while considering osmotic pressure. Why?


Answer the following.

What are isotonic and hypertonic solutions?


Answer the following.

A solvent and its solution containing a nonvolatile solute are separated by a semipermeable membrane. Does the flow of solvent occur in both directions? Comment giving a reason.


Answer the following.

The osmotic pressure of CaCl2 and urea solutions of the same concentration at the same temperature are respectively 0.605 atm and 0.245 atm, calculate van’t Hoff factor for CaCl2.


Answer the following.

How molar mass of a solute is determined by osmotic pressure measurement?


Which of the following statements is applicable for 0.1 M urea solution and 0.1 M sucrose solution?


What are hypertonic solutions?


Explain the osmotic pressure of a solution with the help of a thistle tube.


Explain the phenomenon of osmosis.


Two solutions have different osmotic pressures. The solution of higher osmotic pressure is called ____________.


20 g of a substance were dissolved in 500 mL of water and the osmotic pressure of the solution was found to be 600 mm of mercury at 15°C. The molecular weight of the substance is:


The average osmotic pressure of human blood is 7.8 bar at 37°C. What is the concentration of an aqueous NaCl solution that could be used in the blood stream?


Osmotic pressure of a solution is 0.0821 atm at a temperature of 300 K. The concentration in moles/litre will be:


The temperature at which 10% aqueous solution of (W/V) of glucose will show the osmotic pressure of 16.4 atoms is: (R = 0.082 L atom K−1 mol1)


Which of the following statements is false?


In isotonic solutions:

(i) Solute and solvent both are same.

(ii) Osmotic pressure is same.

(iii) Solute and solvent may or may not be same.

(iv) Solute is always same solvent may be different.


Give an example of a material used for making semipermeable membrane for carrying out reverse osmosis.


Match the items given in Column I and Column II.

Column I Column II
(i) Saturated solution (a) Solution having same osmotic
pressure at a given temperature as
that of given solution.
(ii) Binary solution (b) A solution whose osmotic
pressure is less than that of another.
(iii) Isotonic solution (c) Solution with two components.
(iv) Hypotonic solution (d) A solution which contains maximum
amount of solute that can be
dissolved in a given amount of
solvent at a given temperature.
(v) Solid solution (e) A solution whose osmotic pressure
is more than that of another.
(vi) Hypertonic solution (f) A solution in solid phase.

Discuss biological and industrial importance of osmosis.


Isotonic solutions have same


Which one of the following is a colligative property?


The vapour pressure of water is 12.3 k pa at 300 k. Calculated the vapour pressure of molal solution in it.


The following solutions were prepared by dissolving 10 g of glucose \[\ce{(C6H12O6)}\] in 250 ml of water (P1), 10 g of urea \[\ce{(CH4N2O)}\] in 250 ml of water (P2) and 10 g of sucrose \[\ce{(C12H22O11}\]) in 250 ml of water (P3). The right option for the decreasing order of osmotic pressure of these solutions is ______


Assertion (A) : Osmotic pressure is a colligative property.

Reason (R) : Osmotic pressure is proportional to the molality.


Determine the osmotic pressure of a solution prepared by dissolving 2.32 × 10−2 g of K2SO4 in 2L of solution at 25°C assuming that K2SO4 is completely dissociated.

(R = 0.082 L atm K−1 mol, Molar mass K2SO4 = 174 g mol−1)


Isotonic solutions are the solutions having the same ______.


A solution containing 10 g glucose has osmotic pressure 3.84 atm. If 10 g more glucose is added to the same solution, what will be its osmotic pressure? (Temperature remains constant)


Prove that: M2 = `(W_2RT)/(πV)`.


Define reverse osmosis.


Name the four colligative properties that are oftently used for determination of molecular mass.


How will you determine molar mass of solute from osmotic pressure?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×