मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान इयत्ता १२

Determine k and solve the equation 2x3 – 6x2 + 3x + k = 0 if one of its roots is twice the sum of the other two roots - Mathematics

Advertisements
Advertisements

प्रश्न

Determine k and solve the equation 2x3 – 6x2 + 3x + k = 0 if one of its roots is twice the sum of the other two roots

बेरीज

उत्तर

Given cubic equation

2x3 – 6x2 + 3x + k = 0

Let the roots be α, β, γ

Given α = 2(β + γ)

β + γ = `alpha/2`  .......(1)

Sum of roots α(β + γ) = 3

From (1) `alpha + alpha/2` = 3

`(3alpha)/2` = 3

⇒ α = 2

Again αβ + βγ + γα = `3/2`

α = 2 

⇒ 2β + βγ + 2γ = `3/2`

From (1) `2(alpha/2) + betaγ = 3/2`

βγ = `3/2 - 2`

= `(3 - 4)/2`

= `(-1)/2`

βγ = `(-1)/2`  ........(2)

Product of roots α β γ = `- "k"/2`

α = 2

⇒ 2βγ = `- "k"/2`

βγ = `- "k"/4`  .......(3)

From (2) and (3)

`- "k"/4 = (- 1)/2`

k = `4/2` = 2

k = 2

Also α = 2

⇒ x – 2 is a factor


Other factor `2x^2 - 2x - 1` = 0

x = `(2 +- sqrt(4 + 8))/4`

= `(2 +- 2sqrt(3))/4`

= `(2(1 +- sqrt(3)))/4`

= `(1 +- sqrt(3))/2`

∴ The roots are 2, `(1 + sqrt(3))/2, (1 - sqrt(3))/2`

shaalaa.com
Polynomials with Additional Information
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Theory of Equations - Exercise 3.3 [पृष्ठ ११७]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 12 TN Board
पाठ 3 Theory of Equations
Exercise 3.3 | Q 4 | पृष्ठ ११७
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×