मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान इयत्ता १२

Solve the equation 3x3 – 26x2 + 52x – 24 = 0 if its roots form a geometric progression - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the equation 3x3 – 26x2 + 52x – 24 = 0 if its roots form a geometric progression

बेरीज

उत्तर

Let the roots form a G.P. be `"a"/lambda, "a", "a"lambda`

Product of the roots, `"a"/lambda xx "a" xx "a"lambda = 24/3` = 8

a3 = 8

a = 2

Sum of the rots, `"a"/lambda + "a" + "a"lambda = 26/3`

`"a"(1/lambda + 1 + lambda) = 26/3`

`2((1 + lambda + lambda^2)/lambda) = 26/3`

3 + 3λ + 3λ2 = 13λ

2 + 3λ – 13λ + 3 = 0

2 – 10λ + 3 = 0

(λ – 3)(3λ – 1) = 0

λ = 6 or λ = `1/3`

If λ = 3,  

`"a"/lambda = 2/3`

aλ = 2(3) = 6

If λ = `1/3`

`"a"/lambda = 2/(1/3)` = 

aλ = `2(1/3) = 2/3`

Roots are `"a"/lambda, "a", "a"lambda`

If λ = 3, roots are `2/3, 2, 6`

If λ = `1/3`, roots are `6, 2, 2/3`

shaalaa.com
Polynomials with Additional Information
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Theory of Equations - Exercise 3.3 [पृष्ठ ११७]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 12 TN Board
पाठ 3 Theory of Equations
Exercise 3.3 | Q 3 | पृष्ठ ११७
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×