Advertisements
Advertisements
प्रश्न
Determine whether the points P(1, 0), Q(2, 1) and R(2, 3) lie outside the circle, on the circle or inside the circle x2 + y2 – 4x – 6y + 9 = 0.
उत्तर
The equation of the circle is x2 + y2 – 4x – 6y + 9 = 0
`"PT"^2 = x_1^2 + y_1^2 - 4x_1 - 6y_1 + 9`
At P(1, 0), PT2 = 1 + 0 – 4 – 0 + 9 = 6 > 0
At Q(2, 1), PT2 = 4 + 1 – 8 – 6 + 9 = 0
At R(2, 3), PT2 = 4 + 9 – 8 – 18 + 9 = -4 < 0
The point P lies outside the circle.
The point Q lies on the circle.
The point R lies inside the circle.
APPEARS IN
संबंधित प्रश्न
Find the equation of the circle whose centre is (-3, -2) and having circumference 16π.
Find the equation of the circle on the line joining the points (1, 0), (0, 1), and having its centre on the line x + y = 1.
Find the equation of the tangent to the circle x2 + y2 – 4x + 4y – 8 = 0 at (-2, -2).
If (4, 1) is one extremity of a diameter of the circle x2 + y2 - 2x + 6y - 15 = 0 find the other extremity.
If the perimeter of the circle is 8π units and centre is (2, 2) then the equation of the circle is:
The equation of the circle with centre (3, -4) and touches the x-axis is:
Choose the correct alternative:
The circle x2 + y2 = 4x + 8y + 5 intersects the line 3x – 4y = m at two distinct points if
Choose the correct alternative:
The equation of the normal to the circle x2 + y2 – 2x – 2y + 1 = 0 which is parallel to the line 2x + 4y = 3 is
Choose the correct alternative:
The radius of the circle passing through the points (6, 2) two of whose diameter are x + y = 6 and x + 2y = 4 is
Choose the correct alternative:
If the normals of the parabola y2 = 4x drawn at the end points of its latus rectum are tangents to the circle (x – 3)2 + (y + 2)2 = r2, then the value of r2 is