Advertisements
Advertisements
प्रश्न
दी गई आकृति में छायांकित भाग का क्षेत्रफल ज्ञात कीजिए, यदि PQ = 24 सेमी, PR = 7 सेमी तथा O वृत्त का केंद्र है। [उपयोग Π = `22/7`]
उत्तर
यह देखा जा सकता है कि RQ वृत्त का व्यास है। इसलिए, RPQ 90º होगा।
PQR में पाइथागोरस प्रमेय लागू करने से,
RP2 + PQ2 = RQ2
(7)2 + (24)2 = RQ2
`RQ = sqrt625 = 25`
वृत्त की त्रिज्या, OR = RQ/2 = 25/2
चूँकि RQ वृत्त का व्यास है, यह वृत्त को दो बराबर भागों में विभाजित करता है।
अर्धवृत्त का क्षेत्रफल RPQOR = `1/2 pir^2`
`= 1/2pi(25/2)^2`
`=1/2xx22/7xx625/4`
`=6875/28 "सेमी"^2`
PQR का क्षेत्रफल = `1/2 xx PQ xxPR`
`= 1/2 xx 24 xx 7`
= 84 सेमी2
छायांकित क्षेत्र का क्षेत्रफल = अर्धवृत्त का क्षेत्रफल RPQOR - PQR का क्षेत्रफल
= 6875/28 - 84
`= (6875 - 2352)/28`
`= 4523/28 "सेमी"^2`
APPEARS IN
संबंधित प्रश्न
त्रिज्या 21 cm वाले वृत्त का एक चाप केंद्र पर 60° का कोण अंतरित करता है। ज्ञात कीजिए
चाप की लंबाई [प्रयोग कीजिए= `22/7`]
15 m भुजा वाले एक वर्गाकार घास के मैदान के एक कोने पर लगे खूँटे से एक घोड़े को 5 m लंबी रस्सी से बाँध दिया गया है। ज्ञात कीजिए:
- मैदान के उस भाग का क्षेत्रफल जहाँ घोड़ा घास चर सकता है।
- चरे जा सकने वाले क्षेत्रफल में वृद्धि, यदि घोड़े को 5 m लंबी रस्सी के स्थान पर 10 m लंबी रस्सी से बाँध दिया जाए। [उपयोग = 3.14]
आकृति में, व्यास d वाले एक वृत्त के अंतर्गत एक वर्ग खींचा गया है तथा एक अन्य वर्ग इसी वृत्त के परिगत है। क्या बाहरी वर्ग का क्षेत्रफल आंतरिक वर्ग के क्षेत्रफल का चार गुना है? अपने उत्तर का कारण दीजिए।
क्या यह कहना सत्य है कि व्यास d cm वाले एक वृत्ताकार पहिए द्वारा एक परिभ्रमण में चली गयी दूरी 2 π d cm होती है? क्यों?
एक वृत्त के क्षेत्रफल का संख्यात्मक मान उसकी परिधि के संख्यात्मक मान से अधिक होता है। क्या यह कथन सत्य है? क्यों?
दो भिन्न वृत्तों के दो त्रिज्यखंडों के क्षेत्रफल बराबर हैं। क्या यह आवश्यक है कि इन त्रिज्यखंडों के संगत चापों की लंबाइयाँ बराबर होंगी? क्यों?
दो वृत्तों की परिधियाँ बराबर हैं। क्या यह आवश्यक है कि इन वृतों के क्षेत्रफल भी बराबर हों? क्यों?
त्रिज्या 28 cm वाले एक वृत्त के उस त्रिज्यखंड का क्षेत्रफल ज्ञात कीजिए, जिसका केंद्रीय कोण 45° है।
आकृति में, 10 cm भुजा वाले एक समबाहु त्रिभुज के शीर्षों A, B और C को केंद्र लेकर चाप खींचे गये हैं, जो परस्पर क्रमश: BC, CA और AB के मध्य बिंदुओं D, E और F पर प्रतिच्छेद करते हैं। छायांकित क्षेत्र का क्षेत्रफल ज्ञात कीजिए (π = 3.14 का प्रयोग कीजिए)।
एक 20 cm लंबे तार के टुकड़े को मोड़कर एक वृत्त का चाप बनाया गया है, जो इस वृत्त के केंद्र पर 60° का कोण अंतरित करता है। वृत्त की त्रिज्या ज्ञात कीजिए।