Advertisements
Advertisements
प्रश्न
Divide 57 into two parts whose product is 680.
उत्तर
Let the two parts be x and (57-x)
According to the given condition,
`x(57-x)=680`
⇒`57x-x^2=680`
⇒`x^2-57x+680=0`
⇒`x^2-40x-17x+680=0`
⇒`x(x-40)-17(x-40)=0`
⇒`(x-40) (x-17)=0`
⇒`x-40=0 or x-17=0`
⇒`x=40 or x=17`
When `x=40`
`57-x=57-40=17`
When` x=17`
`57-x=57-17=40`
Hence, the required parts are 17 and 40.
APPEARS IN
संबंधित प्रश्न
Solve each of the following equations by factorization:
`2x^2-1/2x=0`
Solve the following quadratic equations by factorization:
`(1 + 1/(x + 1))(1 - 1/(x - 1)) = 7/8`
Solve the following quadratic equation by factorisation.
x2 + x – 20 = 0
If 2 is a root of the quadratic equation \[3 x^2 + px - 8 = 0\] and the quadratic equation \[4 x^2 - 2px + k = 0\] has equal roots, find the value of k.
The values of k for which the quadratic equation \[16 x^2 + 4kx + 9 = 0\] has real and equal roots are
If `sqrt (2/3)` is a solution of equation 3x2 + mx + 2 = 0, find the value of m.
Solve the following equation by factorisation :
`sqrt(3x^2 - 2x - 1) = 2x - 2`
A wire ; 112 cm long is bent to form a right angled triangle. If the hypotenuse is 50 cm long, find the area of the triangle.
Solve the quadratic equation: x2 – 2ax + (a2 – b2) = 0 for x.
Find the roots of the quadratic equation x2 – x – 2 = 0.