मराठी

दर्शाइए कि |z-2z-3| = 2 एक वृत्त निरूपित करता है। इसकी केंद्र और त्रिज्या ज्ञात कीजिए। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

दर्शाइए कि `|(z - 2)/(z - 3)|` = 2 एक वृत्त निरूपित करता है। इसकी केंद्र और त्रिज्या ज्ञात कीजिए।

बेरीज

उत्तर

पता है कि, `|(z - 2)/(z - 3)|` = 2 

मानो, z = x + iy

∴ `|(x + iy - 2)/(x + iy - 3)|` = 2

⇒ `|((x - 2) + iy)/((x - 3) + iy)|` = 2  ......`[because |a/b| = |a|/|b|]`

⇒ `|(x - 2) + iy| = 2|(x - 3) + iy|`

⇒ `sqrt((x - 2)^2 + y^2) = 2sqrt((x - 3)^2 + y^2)`

दोनों बाजू में वर्गमूल निकालने पर, हमें मिला,

(x – 2)2 + y2 = 4[(x – 3)2 + y2]

⇒ x2 + 4 – 4x + y2 = 4[x2 + 9 – 6x + y2]

⇒ x2 + y2 – 4x + 4 = 4x2 + 4y2 – 24x + 36

⇒ 3x2 + 3y2 – 20x + 32 = 0

⇒ `x^2 + y^2 - 20/3 x + 32/3` = 0

यहाँ, g = `(-10)/3`, f = 0

r = `sqrt(g^2 + f^2 - "c")`

= `sqrt(100/9 + 0 - 32/3)`

= `sqrt(100/9 - 32/3)`

= `sqrt((100 - 96)/9)`

= `sqrt(4/9)`

= `2/3`

इसलिए, सर्कल का आवश्यक समीकरण है, `x^2 + y^2 - 20/3 x + 32/3` = 0

केंद्र = (–g, –f) = `(10/3, 0)` और r = `2/3`

इसलिए, वृत्त का केंद्र `(10/3, 0)` है और त्रिज्या है `2/3`।

shaalaa.com
द्विघातीय समीकरण
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: सम्मिश्र संख्याएँ और द्विघात समीकरण - प्रश्नावली [पृष्ठ ९२]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 11
पाठ 5 सम्मिश्र संख्याएँ और द्विघात समीकरण
प्रश्नावली | Q 14 | पृष्ठ ९२
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×