मराठी

यदि z-1z+1 एक शुद्धत: काल्पनिक संख्या है (z ≠ −1), तो |z| का मान ज्ञात कीजिए। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

यदि `(z - 1)/(z + 1)` एक शुद्धत: काल्पनिक संख्या है (z ≠ −1), तो |z| का मान ज्ञात कीजिए।

बेरीज

उत्तर

यह देखते हुए कि `(z - 1)/(z + 1)` विशुद्ध रूप से काल्पनिक संख्या है।

मानो z = x + yi

∴ `(x + yi - 1)/(x + yi + 1) = ((x - 1) + iy)/((x + 1) + iy)`

= `((x - 1) + iy)/((x + 1) + iy) xx ((x + 1) - iy)/((x + 1) - iy)`

⇒ `((x - 1)(x + 1) - iy(x - 1) + (x + 1)iy - i^2y^2)/((x + 1)^2 - i^2y^2)`

⇒ `(x^2 - 1 + iy(x + 1 - x + 1) + y^2)/(x^2 + 1 + 2x + y^2) = (x^2 + y^2 - 1 + 2yi)/(x^2 + y^2 + 2x + 1)`

⇒ `(x^2 + y^2 - 1)/(x^2 + y^2 + 2x + 1) + (2y)/(x^2 + y^2 + 2x + 1)"i"`

चूंकि, संख्या विशुद्ध रूप से काल्पनिक है, तो वास्तविक भाग = 0.

∴ `(x^2 + y^2 - 1)/(x^2 + y^2 + 2x + 1)` = 0

⇒ x2 + y2 – 1 = 0

⇒ x2 + y2 = 1

⇒ `sqrt(x^2 + y^2)` = 1

∴ |z| = 1

यदि `(z - 1)/(z + 1)`विशुद्ध रूप से काल्पनिक है, (z ≠ 1) तब |z| मान 1 है।

shaalaa.com
सम्मिश्र संख्याओं का बीजगणित
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: सम्मिश्र संख्याएँ और द्विघात समीकरण - प्रश्नावली [पृष्ठ ९२]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 11
पाठ 5 सम्मिश्र संख्याएँ और द्विघात समीकरण
प्रश्नावली | Q 15. | पृष्ठ ९२

संबंधित प्रश्‍न

किन्हीं दो सम्मिश्र संख्याओं z1 और z2 के लिए, सिद्ध कीजिए:

Re(z1z2) = Rez1 Rez2 – Imz1 Imz2


`(1/(1-4i) - 2/(1+i))((3-4i)/(5+i))` को मानक रूप में परिवर्तित कीजिए।


यदि `x  –  iy = sqrt((a-ib)/(c - id))` , तो सिद्ध कीजिए की `(x^2 + y^2) = (a^2 + b^2)/(c^2 + d^2)`


निम्नलिखित को ध्रुवीय रूप में परिवर्तित कीजिए:

`(1+3i)/(1-2i)`


यदि z1, z2, z3 ऐसी सम्मिश्र संख्याएँ हैं कि `|z_1| = |z_2| = |z_3| = |1/z_1 + 1/z_2 + 1/z_3|` = 1, तो |z1 + z2 + z3| का मान ज्ञात कीजिए।


`(-sqrt-1)^{4n  - 3}` का मान ______ है, जहाँ n ∈ N


यदि (2 + i) (2 + 2i) (2 + 3i) ... (2 + ni) = x + iy तो 5.8.13 ... (4 + n2) = ______


बताइए कि निम्नलिखित कथन सत्य है या असत्य है।

सम्मिश्र संख्या z, जिसके लिए |z + 1| < |z - 1| है, को निरूपित करने वाले बिंदु एक वृत्त के अभ्यंतर में स्थित होते हैं।


`(i^(4n + 1) -i^(4n - 1))/2` का क्या मान है?


वह कौन-सा न्यूनतम धनात्मक पूर्णांक n हैं, जिसके लिए (1 + i)2n = (1 – i)2n?


स्तंभ A और स्तंभ B के कथनों का सही मिलान कीजिए:

स्तंभ A स्तंभ B
(a) 1 + i2 + i4 + i6 + ... i20 का मान है (i) शुद्धत: काल्पनिक सम्मिश्र संख्या
(b) `i^(-1097)` का मान है (ii) शुद्धत: वास्तविक सम्मिश्र संख्या
(c) 1 + i का संयुग्मी किस चतुर्थांश में स्थित है (iii) द्वितीय चतुर्थांश
(d) `(1 + 2i)/(1 - i)` किस चतुर्थांश में स्थित है (iv) चौथा चतुर्थांश
(e) यदि a, b, c ∈ R और b2 - 4ac < 0 तब समीकरण ax2 + bx + c = 0 के मूल अवास्तविक एवं सम्मिश्र हैं (v) संयुग्मी युग्मों में घटित नहीं हो सकते हैं
(f) यदि a, b, c ∈ R और b2 – 4ac > 0 एवं b2 – 4ac एक पूर्ण वर्ग है, तो समीकरण ax2 + bx + c = 0 के मूल हैं (vi) संयुग्मी युग्मों में घटित हो सकते हैं

1 + i2 + i4 + i6 + ... + i2n है: 


यदि सम्मिश्र संख्या z = x + iy प्रतिबंध |z + 1| = 1 को संतुष्ट करती है, तो z स्थित है:


सम्मिश्र संख्याओं z, –iz और z + iz द्वारा सम्मिश्र तल में बनाये गये त्रिभुज का क्षेत्रफल है।


एक धनात्मक पूर्णांक n के लिए, `(1−i)^n(1−1/i)^n` का मान ज्ञात कीजिए।


`sum_(n = 1)^13 (i^n + i^(n + 1))` का मान ज्ञात कीजिए, जहाँ n ∈ N


यदि `(1 + i)^2/(2 - i)` = x + iy, तो x + y ज्ञात कीजिए।


यदि |z1| = |z2| = ... = |zn| = 1, तो दर्शाइए कि |z1 + z2 + z3 + ... + zn| = `|1/z_1 + 1/z_2 + 1/z_3 + ... + 1/z_n|`


समीकरण `z + sqrt(2) |(z + 1)| + i` = 0 को संतुष्ट करने वाली सम्मिश्र संख्या ज्ञात कीजिए।


किन्हीं दो सम्मिश्र संख्याओं z1, z2 और किन्हीं वास्तविक संख्याओं a, b, के लिए, |az1 – bz2|2 + |bz1 + az2|2 = ______


संख्या `(1 - i)^3/(1 - i^3)` ______ के बराबर है।


1 + i का गुणनात्मक प्रतिलोम ______ है।

यदि z1 और z2 ऐसी सम्मिश्र संख्याएँ हैं कि z1 + z2 एक वास्तविक संख्या है, तो z2 = ______


बताइए कि निम्नलिखित कथन सत्य है या असत्य है।

|z – 1| = |z – i| को निरूपित करने वाला बिंदु पथ (1, 0) और (0, 1) को मिलाने वाली रेखा पर एक लंब रेखा है।


यदि |z1| = |z2| तब क्या z1 = z2 होना आवश्यक है?


यदि `|(z - 5i)/(z + 5i)|` = 1, तो z कहाँ स्थित है?


यदि सम्मिश्र संख्या 2 − i से निरूपित बिंदु को मूलबिंदु के प्रति दक्षिणावर्त दिशा में एक कोण `π/2` पर घुमाया जाए, तो उस बिंदु की नयी स्थिति होगी


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×