हिंदी

यदि z-1z+1 एक शुद्धत: काल्पनिक संख्या है (z ≠ −1), तो |z| का मान ज्ञात कीजिए। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

यदि `(z - 1)/(z + 1)` एक शुद्धत: काल्पनिक संख्या है (z ≠ −1), तो |z| का मान ज्ञात कीजिए।

योग

उत्तर

यह देखते हुए कि `(z - 1)/(z + 1)` विशुद्ध रूप से काल्पनिक संख्या है।

मानो z = x + yi

∴ `(x + yi - 1)/(x + yi + 1) = ((x - 1) + iy)/((x + 1) + iy)`

= `((x - 1) + iy)/((x + 1) + iy) xx ((x + 1) - iy)/((x + 1) - iy)`

⇒ `((x - 1)(x + 1) - iy(x - 1) + (x + 1)iy - i^2y^2)/((x + 1)^2 - i^2y^2)`

⇒ `(x^2 - 1 + iy(x + 1 - x + 1) + y^2)/(x^2 + 1 + 2x + y^2) = (x^2 + y^2 - 1 + 2yi)/(x^2 + y^2 + 2x + 1)`

⇒ `(x^2 + y^2 - 1)/(x^2 + y^2 + 2x + 1) + (2y)/(x^2 + y^2 + 2x + 1)"i"`

चूंकि, संख्या विशुद्ध रूप से काल्पनिक है, तो वास्तविक भाग = 0.

∴ `(x^2 + y^2 - 1)/(x^2 + y^2 + 2x + 1)` = 0

⇒ x2 + y2 – 1 = 0

⇒ x2 + y2 = 1

⇒ `sqrt(x^2 + y^2)` = 1

∴ |z| = 1

यदि `(z - 1)/(z + 1)`विशुद्ध रूप से काल्पनिक है, (z ≠ 1) तब |z| मान 1 है।

shaalaa.com
सम्मिश्र संख्याओं का बीजगणित
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: सम्मिश्र संख्याएँ और द्विघात समीकरण - प्रश्नावली [पृष्ठ ९२]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 11
अध्याय 5 सम्मिश्र संख्याएँ और द्विघात समीकरण
प्रश्नावली | Q 15. | पृष्ठ ९२

संबंधित प्रश्न

सम्मिश्र संख्या का गुणात्मक प्रतिलोम ज्ञात कीजिए:

4 - 3i


निम्नलिखित व्यंजक को a + ib के रूप में व्यक्त कीजिए:

`((3 + isqrt5)(3 - isqrt5))/((sqrt3 + sqrt2i)-(sqrt3 - isqrt2))`


यदि (a + ib )(c + id) (e + if) (g + ih) = A + iB है तो दर्शाइए कि (a2 + b2) (c2 + d2) (e2 + f2) (g2 + h2) = A2 + B2


वे बिंदु निर्धारित कीजिए, जिनके लिए 3 < |z| < 4


यदि (2 + i) (2 + 2i) (2 + 3i) ... (2 + ni) = x + iy तो 5.8.13 ... (4 + n2) = ______


बताइए कि निम्नलिखित कथन सत्य है या असत्य है।

एक शून्येतर सम्मिश्र संख्या को i से गुणा करने पर, वह उसे वामावर्त दिशा में एक समकोण पर घुमा देता है।


बताइए कि निम्नलिखित कथन सत्य है या असत्य है।

यदि n एक धनात्मक पूर्णाक है, तो in + (i)n+1 + (i)n+2 + (i)n+3 का मान शून्य है।


स्तंभ A और स्तंभ B के कथनों का सही मिलान कीजिए:

स्तंभ A स्तंभ B
(a) 1 + i2 + i4 + i6 + ... i20 का मान है (i) शुद्धत: काल्पनिक सम्मिश्र संख्या
(b) `i^(-1097)` का मान है (ii) शुद्धत: वास्तविक सम्मिश्र संख्या
(c) 1 + i का संयुग्मी किस चतुर्थांश में स्थित है (iii) द्वितीय चतुर्थांश
(d) `(1 + 2i)/(1 - i)` किस चतुर्थांश में स्थित है (iv) चौथा चतुर्थांश
(e) यदि a, b, c ∈ R और b2 - 4ac < 0 तब समीकरण ax2 + bx + c = 0 के मूल अवास्तविक एवं सम्मिश्र हैं (v) संयुग्मी युग्मों में घटित नहीं हो सकते हैं
(f) यदि a, b, c ∈ R और b2 – 4ac > 0 एवं b2 – 4ac एक पूर्ण वर्ग है, तो समीकरण ax2 + bx + c = 0 के मूल हैं (vi) संयुग्मी युग्मों में घटित हो सकते हैं

1 - i के कोणांक का मुख्य मान क्या है?


z का बिंदु पथ क्या होगा, यदि z – 2 – 3i का कोणांक `pi/4` है?


1 + i2 + i4 + i6 + ... + i2n है: 


सम्मिश्र संख्याओं z, –iz और z + iz द्वारा सम्मिश्र तल में बनाये गये त्रिभुज का क्षेत्रफल है।


समीकरण z2 + |z|2 = 0, z ≠ 0 के हलों की संख्या है


यदि `((1 + i)/(1 - i))^3 - ((1 - i)/(1 + i))^3` = x + iy, तो (x, y) ज्ञात कीजिए।


यदि `(1 + i)^2/(2 - i)` = x + iy, तो x + y ज्ञात कीजिए।


यदि `(barz + 2)/(barz - 1)` का वास्तविक भाग 4 है, तो दशाइए कि z को निरूपित करने वाले बिंदु का बिंदु पथ सम्मिश्र तल में एक वृत्त है।


यदि |z + 1| = z + 2(1 + i) है, तो z ज्ञात कीजिए।


किन्हीं दो सम्मिश्र संख्याओं z1, z2 और किन्हीं वास्तविक संख्याओं a, b, के लिए, |az1 – bz2|2 + |bz1 + az2|2 = ______


बताइए कि निम्नलिखित कथन सत्य है या असत्य है।

किसी भी सम्मिश्र संख्या z के लिए, |z| + |z – 1| का कम से कम मान 1 है।


बताइए कि निम्नलिखित कथन सत्य है या असत्य है।

|z – 1| = |z – i| को निरूपित करने वाला बिंदु पथ (1, 0) और (0, 1) को मिलाने वाली रेखा पर एक लंब रेखा है।


α का वह वास्तविक मान, जिसके लिए व्यंजक `(1 - i sin alpha)/(1 + 2i sin alpha)` शुद्धत: वास्तविक है, निम्नलिखित में से कौन सा है:

यदि `((1 + i)/(1 - i))^x` = 1, तो


किन्हीं दो सम्मिश्र संख्याओं z1 तथा z2 के लिए, निम्नलिखित में से कौन सही है?


यदि सम्मिश्र संख्या 2 − i से निरूपित बिंदु को मूलबिंदु के प्रति दक्षिणावर्त दिशा में एक कोण `π/2` पर घुमाया जाए, तो उस बिंदु की नयी स्थिति होगी


प्रतिबंध `|(i + z)/(i - z)| = 1` को संतुष्ट करने वाली सम्मिश्र संख्या स्थित होगी:


यदि f(z) = `(7 - z)/(1 - z^2)` जहाँ z = 1 + 2i, तो |f(z)| है


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×