Advertisements
Advertisements
प्रश्न
स्तंभ A और स्तंभ B के कथनों का सही मिलान कीजिए:
स्तंभ A | स्तंभ B |
(a) 1 + i2 + i4 + i6 + ... i20 का मान है | (i) शुद्धत: काल्पनिक सम्मिश्र संख्या |
(b) `i^(-1097)` का मान है | (ii) शुद्धत: वास्तविक सम्मिश्र संख्या |
(c) 1 + i का संयुग्मी किस चतुर्थांश में स्थित है | (iii) द्वितीय चतुर्थांश |
(d) `(1 + 2i)/(1 - i)` किस चतुर्थांश में स्थित है | (iv) चौथा चतुर्थांश |
(e) यदि a, b, c ∈ R और b2 - 4ac < 0 तब समीकरण ax2 + bx + c = 0 के मूल अवास्तविक एवं सम्मिश्र हैं | (v) संयुग्मी युग्मों में घटित नहीं हो सकते हैं |
(f) यदि a, b, c ∈ R और b2 – 4ac > 0 एवं b2 – 4ac एक पूर्ण वर्ग है, तो समीकरण ax2 + bx + c = 0 के मूल हैं | (vi) संयुग्मी युग्मों में घटित हो सकते हैं |
उत्तर
स्तंभ A | उत्तर |
(a) 1 + i2 + i4 + i6 + ... i20 का मान है | (ii) शुद्धत: वास्तविक सम्मिश्र संख्या |
(b) `i^(-1097)` का मान है | (i) शुद्धत: काल्पनिक सम्मिश्र संख्या |
(c) 1 + i का संयुग्मी किस चतुर्थांश में स्थित है | (iv) चौथा चतुर्थांश |
(d) `(1 + 2i)/(1 - i)` किस चतुर्थांश में स्थित है | (iii) द्वितीय चतुर्थांश |
(e) यदि a, b, c ∈ R और b2 - 4ac < 0 तब समीकरण ax2 + bx + c = 0 के मूल अवास्तविक एवं सम्मिश्र हैं | (vi) संयुग्मी युग्मों में घटित हो सकते हैं |
(f) यदि a, b, c ∈ R और b2 – 4ac > 0 एवं b2 – 4ac एक पूर्ण वर्ग है, तो समीकरण ax2 + bx + c = 0 के मूल हैं | (v) संयुग्मी युग्मों में घटित नहीं हो सकते हैं |
स्पष्टीकरण:
(a) क्योंकि 1 + i2 + i4 + i6 + ... i20
= 1 – 1 + 1 – 1 + ... + 1 = 1 (जो शुद्धत: एक वास्तविक सम्मिश्र संख्या है)
(b) क्योंकि `i^(-1097) = 1/((i)^1097) = 1/(i^(4 xx 274 + 1)`
= `1/((i^4)^274i) = 1/i = i/i^2 = – i`, जो शुद्धत: एक काल्पनिक सम्मिश्र संख्या है।
(c) 1 + i का संयुग्मी 1 - i है, जो बिंदु (1, -1) से निरूपित किया जाता है और यह चौथे चतुर्थांश में स्थित है।
(d) क्योंकि `(1 + 2i)/(1 - i) = (1 + 2i)/(1 - i) xx (1 + i)/(1 + i)`
= `(-1 + 3i)/2` = `-1/2 + 3/2 i`, जिसे द्वितीय चतुर्थांश में बिंदु `(-1/2, 3/2)` से निरूपित किया जाता है।
(e) यदि b2 - 4ac < 0 तो = D < 0 अर्थात् D का वर्गमूल एक काल्पनिक संख्या है। अतः मूल `x = (-b ± "काल्पनिक संख्या")/(2a)` है, अर्थात् मूल संयुग्मी युग्मों में हैं।
(f) समीकरण `x^2 - (5 + sqrt2)x + 5sqrt2 = 0` पर विचार कीजिए, जहाँ a = 1, `b = -(5 + sqrt2), c = 5sqrt2` स्पष्टतः a, b, c ∈ R
अब D = `b^2 - 4ac = {-(5 + sqrt2)}^2 - 4.1.5sqrt2 = (5 - sqrt2)^2`
अतः `x = (5 + sqrt2 ± (5 - sqrt2))/2 = 5, sqrt2` जिससे संयुग्मी युग्म नहीं बनता है।
APPEARS IN
संबंधित प्रश्न
सम्मिश्र संख्या का गुणात्मक प्रतिलोम ज्ञात कीजिए:
`sqrt5 + 3i`
सम्मिश्र संख्या का गुणात्मक प्रतिलोम ज्ञात कीजिए:
- i
निम्नलिखित व्यंजक को a + ib के रूप में व्यक्त कीजिए:
`((3 + isqrt5)(3 - isqrt5))/((sqrt3 + sqrt2i)-(sqrt3 - isqrt2))`
निम्नलिखित को ध्रुवीय रूप में परिवर्तित कीजिए:
`(1+7i)/(2-i)^2`
यदि (a + ib )(c + id) (e + if) (g + ih) = A + iB है तो दर्शाइए कि (a2 + b2) (c2 + d2) (e2 + f2) (g2 + h2) = A2 + B2
यदि `((1+i)/(1-i))^m` = 1, तो m का न्यूनतम पूर्णांक मान ज्ञात कीजिए।
मान ज्ञात कीजिए: (1 + i)6 + (1 – i)3
यदि `(x + iy)^(1/3)` = a + ib, जहाँ y, a, b ∈ R हे तो दर्शाइए कि `x/a - y/b` = –2(a2 + b2)
यदि z1, z2, z3 ऐसी सम्मिश्र संख्याएँ हैं कि `|z_1| = |z_2| = |z_3| = |1/z_1 + 1/z_2 + 1/z_3|` = 1, तो |z1 + z2 + z3| का मान ज्ञात कीजिए।
वे बिंदु निर्धारित कीजिए, जिनके लिए 3 < |z| < 4
'a' का वास्तविक मान जिसके लिए 3i3 – 2ai2 + (1 – a)i + 5 वास्तविक है ______ होगा।
बताइए कि निम्नलिखित कथन सत्य है या असत्य है।
सम्मिश्र संख्या cosθ + isinθ, θ के किसी मान के लिए शून्य हो सकती है।
बताइए कि निम्नलिखित कथन सत्य है या असत्य है।
यदि n एक धनात्मक पूर्णाक है, तो in + (i)n+1 + (i)n+2 + (i)n+3 का मान शून्य है।
1 + i2 + i4 + i6 + ... + i2n है:
यदि सम्मिश्र संख्या z = x + iy प्रतिबंध |z + 1| = 1 को संतुष्ट करती है, तो z स्थित है:
समीकरण z2 + |z|2 = 0, z ≠ 0 के हलों की संख्या है
यदि `(barz + 2)/(barz - 1)` का वास्तविक भाग 4 है, तो दशाइए कि z को निरूपित करने वाले बिंदु का बिंदु पथ सम्मिश्र तल में एक वृत्त है।
यदि |z1| = 1(z1 ≠ –1) और z2 = `(z_1 - 1)/(z_1 + 1)`, तो दर्शाइए कि z2 का वास्तविक भाग शून्य है।
यदि |z1| = |z2| = ... = |zn| = 1, तो दर्शाइए कि |z1 + z2 + z3 + ... + zn| = `|1/z_1 + 1/z_2 + 1/z_3 + ... + 1/z_n|`
किन्हीं दो सम्मिश्र संख्याओं z1, z2 और किन्हीं वास्तविक संख्याओं a, b, के लिए, |az1 – bz2|2 + |bz1 + az2|2 = ______
यदि |z + 4| ≤ 3, तो |z + 1| के अधिकतम और न्यूनतम मान ______ एवं ______ हैं।
x का एक वास्तविक मान समीकरण `((3 - 4ix)/(3 + 4ix))` = α − iβ(α, β ∈ R) को संतुष्ट करता है, यदि α2 + β2 = ______
किन्हीं दो सम्मिश्र संख्याओं z1 तथा z2 के लिए, निम्नलिखित में से कौन सही है?
मान लीजिए कि x, y ∈ R, तो x + iy एक अवास्तविक सम्मिश्र संख्या है, यदि
यदि a + ib = c + id, तो