हिंदी

यदि z¯+2z¯-1 का वास्तविक भाग 4 है, तो दशाइए कि z को निरूपित करने वाले बिंदु का बिंदु पथ सम्मिश्र तल में एक वृत्त है। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

यदि `(barz + 2)/(barz - 1)` का वास्तविक भाग 4 है, तो दशाइए कि z को निरूपित करने वाले बिंदु का बिंदु पथ सम्मिश्र तल में एक वृत्त है।

योग

उत्तर

मान लीजिए z = x + iy और इसलिए, z = x − iy

`(barz + 2)/(barz - 1) = (x - iy + 2)/(x - iy - 1)` ......(i)

= `((x + 2) - iy)/((x - 1) - iy)`

= `((x + 2) - iy)/((x - 1) - iy) xx ((x - 1) + iy)/((x - 1) + iy)`

= `((x + 2)(x - 1) + (x + 2)yi - (x - 1)yi - i^2y^2)/((x - 1)^2 - i^2y^2)`

समीकरण (i) हल करें।

= `(x^2 + 2x - x - 2 + (x + 2 - x + 1)yi + y^2)/((x - 1)^2 + y^2)`

= `(x^2 + y^2 + x - 2)/((x - 1)^2 + y^2) + (3y)/((x - 1)^2 + y^2)i`

समझो वास्तविक भाग = 4

∴ `(x^2 + y^2 + x - 2)/((x - 1)^2 + y^2)` = 4

⇒ x2 + y2 + x – 2 = 4[(x – 1)2 + y2]

⇒ x2 + y2 + x – 2 = 4[x2 + 1 – 2x + y2]

⇒ x2 + y2 + x – 2 = 4x2 + 4 – 8x + 4y2

⇒ x2 – 4x2 + y2 – 4y2 + x + 8x – 2 – 4 = 0

⇒ – 3x2 – 3y2 + 9x – 6 = 0

⇒ x2 + y2 – 3x + 2 = 0 जो वृत्त है।

z एक सर्कल पर स्थित है।

shaalaa.com
सम्मिश्र संख्याओं का बीजगणित
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: सम्मिश्र संख्याएँ और द्विघात समीकरण - प्रश्नावली [पृष्ठ ९१]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 11
अध्याय 5 सम्मिश्र संख्याएँ और द्विघात समीकरण
प्रश्नावली | Q 9. | पृष्ठ ९१

संबंधित प्रश्न

सम्मिश्र संख्या का गुणात्मक प्रतिलोम ज्ञात कीजिए:

4 - 3i


निम्नलिखित व्यंजक को a + ib के रूप में व्यक्त कीजिए:

`((3 + isqrt5)(3 - isqrt5))/((sqrt3 + sqrt2i)-(sqrt3 - isqrt2))`


यदि α और β भिन्न सम्मिश्र संख्याएँ हैं जहाँ |β| = 1, तब `|(beta - alpha)/(1-baralphabeta)|`  का मान ज्ञात कीजिए।


समीकरण `|1-i|^x = 2^x`  के शून्येत्तर पूर्णांक मूलों की संख्या ज्ञात कीजिए।


यदि (a + ib )(c + id) (e + if) (g + ih) = A + iB है तो दर्शाइए कि (a2 + b2) (c2 + d2) (e2 + f2) (g2 + h2) = A2 + B2


यदि `(x + iy)^(1/3)` = a + ib, जहाँ y, a, b ∈ R हे तो दर्शाइए कि `x/a - y/b` = –2(a2 + b2)


यदि z1, z2, z3 ऐसी सम्मिश्र संख्याएँ हैं कि `|z_1| = |z_2| = |z_3| = |1/z_1 + 1/z_2 + 1/z_3|` = 1, तो |z1 + z2 + z3| का मान ज्ञात कीजिए।


`(-sqrt-1)^{4n  - 3}` का मान ______ है, जहाँ n ∈ N


यदि (2 + i) (2 + 2i) (2 + 3i) ... (2 + ni) = x + iy तो 5.8.13 ... (4 + n2) = ______


बताइए कि निम्नलिखित कथन सत्य है या असत्य है।

सम्मिश्र संख्या cosθ + isinθ, θ के किसी मान के लिए शून्य हो सकती है।


बताइए कि निम्नलिखित कथन सत्य है या असत्य है।

सम्मिश्र संख्या z, जिसके लिए |z + 1| < |z - 1| है, को निरूपित करने वाले बिंदु एक वृत्त के अभ्यंतर में स्थित होते हैं।


z का बिंदु पथ क्या होगा, यदि z – 2 – 3i का कोणांक `pi/4` है?


1 + i2 + i4 + i6 + ... + i2n है: 


यदि सम्मिश्र संख्या z = x + iy प्रतिबंध |z + 1| = 1 को संतुष्ट करती है, तो z स्थित है:


सम्मिश्र संख्याओं z, –iz और z + iz द्वारा सम्मिश्र तल में बनाये गये त्रिभुज का क्षेत्रफल है।


समीकरण z2 + |z|2 = 0, z ≠ 0 के हलों की संख्या है


यदि `((1 + i)/(1 - i))^3 - ((1 - i)/(1 + i))^3` = x + iy, तो (x, y) ज्ञात कीजिए।


यदि |z + 1| = z + 2(1 + i) है, तो z ज्ञात कीजिए।


यदि |z1| = 1(z1 ≠ –1) और z2 = `(z_1 - 1)/(z_1 + 1)`, तो दर्शाइए कि z2 का वास्तविक भाग शून्य है।


यदि |z1| = |z2| = ... = |zn| = 1, तो दर्शाइए कि |z1 + z2 + z3 + ... + zn| = `|1/z_1 + 1/z_2 + 1/z_3 + ... + 1/z_n|`


किन्हीं दो सम्मिश्र संख्याओं z1, z2 और किन्हीं वास्तविक संख्याओं a, b, के लिए, |az1 – bz2|2 + |bz1 + az2|2 = ______


संख्या `(1 - i)^3/(1 - i^3)` ______ के बराबर है।


यदि |z + 4| ≤ 3, तो |z + 1| के अधिकतम और न्यूनतम मान ______ एवं ______ हैं।


यदि `|(z - 2)/(z + 2)| = pi/6` है, तो z का बिंदु पथ ______ है।


बताइए कि निम्नलिखित कथन सत्य है या असत्य है।

|z – 1| = |z – i| को निरूपित करने वाला बिंदु पथ (1, 0) और (0, 1) को मिलाने वाली रेखा पर एक लंब रेखा है।


यदि `|(z - 5i)/(z + 5i)|` = 1, तो z कहाँ स्थित है?


यदि सम्मिश्र संख्या 2 − i से निरूपित बिंदु को मूलबिंदु के प्रति दक्षिणावर्त दिशा में एक कोण `π/2` पर घुमाया जाए, तो उस बिंदु की नयी स्थिति होगी


प्रतिबंध `|(i + z)/(i - z)| = 1` को संतुष्ट करने वाली सम्मिश्र संख्या स्थित होगी:


यदि z एक सम्मिश्र संख्या है, तो


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×