हिंदी

यदि |z + 1| = z + 2(1 + i) है, तो z ज्ञात कीजिए। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

यदि |z + 1| = z + 2(1 + i) है, तो z ज्ञात कीजिए।

योग

उत्तर

पता है कि, |z + 1| = z + 2(1 + i)

मानो, z = x + iy

डालो फिर, |x + iy + 1| = (x + iy) + 2(1 + i)

⇒ |(x + 1) + iy| = x + iy + 2 + 2i

⇒ |(x + 1) + iy| = (x + 2) + (y + 2)i

⇒ `sqrt((x + 1)^2 + y^2)` = (x + 2) + (y + 2)i   ......`[because |x + iy| = sqrt(x^2 + y^2)]`

दोनों बाजू का वर्गमूल निकालने पर, हमें मिला,

(x + 1)2 + y2 = (x + 2)2 + (y + 2)2 .i2 + 2(x + 2)(y + 2)i

⇒ x2 + 1 + 2x + y2 = x2 + 4 + 4x – y2 – 4y – 4 + 2(x + 2)(y + 2)i

वास्तविक और काल्पनिक भागों की तुलना करें,

x2 + 1 + 2x + y2 = x2 + 4x – y2 – 4y और 2(x + 2)(y + 2) = 0

⇒ 2y2 – 2x + 4y + 1 = 0   ......(i)

और (x + 2)(y + 2) = 0  .....(ii)

x + 2 = 0 or y + 2 = 0

∴ x = –2 or y = –2

अब X = –2 समीकरण (i) में डालें।

2y2 – 2 × (–2) + 4y + 1 = 0

⇒ 2y2 + 4 + 4y + 1 = 0 

⇒ y2 + 4y + 5 = 0

b2 – 4ac = (4)2 – 4 × 2 × 5

16 – 40 = –24 < 0 कोई वास्तविक जड़ें नहीं।

समीकरण (i) में y = –2 डालें,

2(–2)2 – 2x + 4(–2) + 1 = 0

8 – 2x – 8 + 1 = 0

⇒ x = `1/2` और y = –2

इसलिए, z = x + iy = `(1/2 - 2i)`

shaalaa.com
सम्मिश्र संख्याओं का बीजगणित
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: सम्मिश्र संख्याएँ और द्विघात समीकरण - प्रश्नावली [पृष्ठ ९२]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 11
अध्याय 5 सम्मिश्र संख्याएँ और द्विघात समीकरण
प्रश्नावली | Q 12. | पृष्ठ ९२

संबंधित प्रश्न

सम्मिश्र संख्याओं में प्रत्येक को ध्रुवीय रूप में रूपांतरित कीजिए:

1 – i


`(1/(1-4i) - 2/(1+i))((3-4i)/(5+i))` को मानक रूप में परिवर्तित कीजिए।


यदि `x  –  iy = sqrt((a-ib)/(c - id))` , तो सिद्ध कीजिए की `(x^2 + y^2) = (a^2 + b^2)/(c^2 + d^2)`


यदि α और β भिन्न सम्मिश्र संख्याएँ हैं जहाँ |β| = 1, तब `|(beta - alpha)/(1-baralphabeta)|`  का मान ज्ञात कीजिए।


यदि `((1+i)/(1-i))^m` =   1, तो m का न्यूनतम पूर्णांक मान ज्ञात कीजिए।


'a' का वास्तविक मान जिसके लिए 3i3 – 2ai2 + (1 – a)i + 5 वास्तविक है ______ होगा।


`(-sqrt-1)^{4n  - 3}` का मान ______ है, जहाँ n ∈ N


यदि (2 + i) (2 + 2i) (2 + 3i) ... (2 + ni) = x + iy तो 5.8.13 ... (4 + n2) = ______


बताइए कि निम्नलिखित कथन सत्य है या असत्य है।

एक शून्येतर सम्मिश्र संख्या को i से गुणा करने पर, वह उसे वामावर्त दिशा में एक समकोण पर घुमा देता है।


z का बिंदु पथ क्या होगा, यदि z – 2 – 3i का कोणांक `pi/4` है?


यदि सम्मिश्र संख्या z = x + iy प्रतिबंध |z + 1| = 1 को संतुष्ट करती है, तो z स्थित है:


समीकरण |z + 1 - i| = |z - 1 + i| निरूपित करता है एक 


एक धनात्मक पूर्णांक n के लिए, `(1−i)^n(1−1/i)^n` का मान ज्ञात कीजिए।


यदि `((1 + i)/(1 - i))^3 - ((1 - i)/(1 + i))^3` = x + iy, तो (x, y) ज्ञात कीजिए।


यदि `((1 - i)/(1 + i))^100` = a + ib है, तो (a, b) ज्ञात कीजिए।


यदि (1 + i)z = `(1 - i)barz` है, तो दर्शाइए कि z = `-ibarz`


यदि `(barz + 2)/(barz - 1)` का वास्तविक भाग 4 है, तो दशाइए कि z को निरूपित करने वाले बिंदु का बिंदु पथ सम्मिश्र तल में एक वृत्त है।


यदि `(z - 1)/(z + 1)` एक शुद्धत: काल्पनिक संख्या है (z ≠ −1), तो |z| का मान ज्ञात कीजिए।


यदि |z1| = 1(z1 ≠ –1) और z2 = `(z_1 - 1)/(z_1 + 1)`, तो दर्शाइए कि z2 का वास्तविक भाग शून्य है।


`sqrt(-25) xx sqrt(-9)` का मान ______ है।


श्रेणी i + i2 + i3 + .... का 1000 पदों तक का योग ______ है।


बताइए कि निम्नलिखित कथन सत्य है या असत्य है।

|z – 1| = |z – i| को निरूपित करने वाला बिंदु पथ (1, 0) और (0, 1) को मिलाने वाली रेखा पर एक लंब रेखा है।


बताइए कि निम्नलिखित कथन सत्य है या असत्य है।

असमिका |z – 4| < |z – 2| असमिका x > 3 से प्रदत्त क्षेत्र को निरूपित करती है।


यदि |z1| = |z2| तब क्या z1 = z2 होना आवश्यक है?


किन्हीं दो सम्मिश्र संख्याओं z1 तथा z2 के लिए, निम्नलिखित में से कौन सही है?


यदि सम्मिश्र संख्या 2 − i से निरूपित बिंदु को मूलबिंदु के प्रति दक्षिणावर्त दिशा में एक कोण `π/2` पर घुमाया जाए, तो उस बिंदु की नयी स्थिति होगी


θ का वह वास्तविक मान, जिसके लिए `(1 + i cos theta)/(1 - 2i cos theta)` एक वास्तविक संख्या है, निम्नलिखित में से कौन सा है:


यदि f(z) = `(7 - z)/(1 - z^2)` जहाँ z = 1 + 2i, तो |f(z)| है


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×