Advertisements
Advertisements
प्रश्न
यदि |z + 1| = z + 2(1 + i) है, तो z ज्ञात कीजिए।
उत्तर
पता है कि, |z + 1| = z + 2(1 + i)
मानो, z = x + iy
डालो फिर, |x + iy + 1| = (x + iy) + 2(1 + i)
⇒ |(x + 1) + iy| = x + iy + 2 + 2i
⇒ |(x + 1) + iy| = (x + 2) + (y + 2)i
⇒ `sqrt((x + 1)^2 + y^2)` = (x + 2) + (y + 2)i ......`[because |x + iy| = sqrt(x^2 + y^2)]`
दोनों बाजू का वर्गमूल निकालने पर, हमें मिला,
(x + 1)2 + y2 = (x + 2)2 + (y + 2)2 .i2 + 2(x + 2)(y + 2)i
⇒ x2 + 1 + 2x + y2 = x2 + 4 + 4x – y2 – 4y – 4 + 2(x + 2)(y + 2)i
वास्तविक और काल्पनिक भागों की तुलना करें,
x2 + 1 + 2x + y2 = x2 + 4x – y2 – 4y और 2(x + 2)(y + 2) = 0
⇒ 2y2 – 2x + 4y + 1 = 0 ......(i)
और (x + 2)(y + 2) = 0 .....(ii)
x + 2 = 0 or y + 2 = 0
∴ x = –2 or y = –2
अब X = –2 समीकरण (i) में डालें।
2y2 – 2 × (–2) + 4y + 1 = 0
⇒ 2y2 + 4 + 4y + 1 = 0
⇒ y2 + 4y + 5 = 0
b2 – 4ac = (4)2 – 4 × 2 × 5
16 – 40 = –24 < 0 कोई वास्तविक जड़ें नहीं।
समीकरण (i) में y = –2 डालें,
2(–2)2 – 2x + 4(–2) + 1 = 0
8 – 2x – 8 + 1 = 0
⇒ x = `1/2` और y = –2
इसलिए, z = x + iy = `(1/2 - 2i)`
APPEARS IN
संबंधित प्रश्न
सम्मिश्र संख्याओं में प्रत्येक को ध्रुवीय रूप में रूपांतरित कीजिए:
1 – i
`(1/(1-4i) - 2/(1+i))((3-4i)/(5+i))` को मानक रूप में परिवर्तित कीजिए।
यदि `x – iy = sqrt((a-ib)/(c - id))` , तो सिद्ध कीजिए की `(x^2 + y^2) = (a^2 + b^2)/(c^2 + d^2)`
यदि α और β भिन्न सम्मिश्र संख्याएँ हैं जहाँ |β| = 1, तब `|(beta - alpha)/(1-baralphabeta)|` का मान ज्ञात कीजिए।
यदि `((1+i)/(1-i))^m` = 1, तो m का न्यूनतम पूर्णांक मान ज्ञात कीजिए।
'a' का वास्तविक मान जिसके लिए 3i3 – 2ai2 + (1 – a)i + 5 वास्तविक है ______ होगा।
`(-sqrt-1)^{4n - 3}` का मान ______ है, जहाँ n ∈ N
यदि (2 + i) (2 + 2i) (2 + 3i) ... (2 + ni) = x + iy तो 5.8.13 ... (4 + n2) = ______
बताइए कि निम्नलिखित कथन सत्य है या असत्य है।
एक शून्येतर सम्मिश्र संख्या को i से गुणा करने पर, वह उसे वामावर्त दिशा में एक समकोण पर घुमा देता है।
z का बिंदु पथ क्या होगा, यदि z – 2 – 3i का कोणांक `pi/4` है?
यदि सम्मिश्र संख्या z = x + iy प्रतिबंध |z + 1| = 1 को संतुष्ट करती है, तो z स्थित है:
समीकरण |z + 1 - i| = |z - 1 + i| निरूपित करता है एक
एक धनात्मक पूर्णांक n के लिए, `(1−i)^n(1−1/i)^n` का मान ज्ञात कीजिए।
यदि `((1 + i)/(1 - i))^3 - ((1 - i)/(1 + i))^3` = x + iy, तो (x, y) ज्ञात कीजिए।
यदि `((1 - i)/(1 + i))^100` = a + ib है, तो (a, b) ज्ञात कीजिए।
यदि (1 + i)z = `(1 - i)barz` है, तो दर्शाइए कि z = `-ibarz`
यदि `(barz + 2)/(barz - 1)` का वास्तविक भाग 4 है, तो दशाइए कि z को निरूपित करने वाले बिंदु का बिंदु पथ सम्मिश्र तल में एक वृत्त है।
यदि `(z - 1)/(z + 1)` एक शुद्धत: काल्पनिक संख्या है (z ≠ −1), तो |z| का मान ज्ञात कीजिए।
यदि |z1| = 1(z1 ≠ –1) और z2 = `(z_1 - 1)/(z_1 + 1)`, तो दर्शाइए कि z2 का वास्तविक भाग शून्य है।
`sqrt(-25) xx sqrt(-9)` का मान ______ है।
श्रेणी i + i2 + i3 + .... का 1000 पदों तक का योग ______ है।
बताइए कि निम्नलिखित कथन सत्य है या असत्य है।
|z – 1| = |z – i| को निरूपित करने वाला बिंदु पथ (1, 0) और (0, 1) को मिलाने वाली रेखा पर एक लंब रेखा है।
बताइए कि निम्नलिखित कथन सत्य है या असत्य है।
असमिका |z – 4| < |z – 2| असमिका x > 3 से प्रदत्त क्षेत्र को निरूपित करती है।
यदि |z1| = |z2| तब क्या z1 = z2 होना आवश्यक है?
किन्हीं दो सम्मिश्र संख्याओं z1 तथा z2 के लिए, निम्नलिखित में से कौन सही है?
यदि सम्मिश्र संख्या 2 − i से निरूपित बिंदु को मूलबिंदु के प्रति दक्षिणावर्त दिशा में एक कोण `π/2` पर घुमाया जाए, तो उस बिंदु की नयी स्थिति होगी
θ का वह वास्तविक मान, जिसके लिए `(1 + i cos theta)/(1 - 2i cos theta)` एक वास्तविक संख्या है, निम्नलिखित में से कौन सा है:
यदि f(z) = `(7 - z)/(1 - z^2)` जहाँ z = 1 + 2i, तो |f(z)| है