Advertisements
Advertisements
प्रश्न
यदि |z1| = |z2| तब क्या z1 = z2 होना आवश्यक है?
उत्तर
|z1| = |z2|
z1 और z2 मूल बिंदु से कुछ दूरी पर हैं।
मानो, z1 = 3 + 4i और z2 = 4 + 3i
|z1| = |3 + 4i| = `sqrt(3^2 + 4^2) = sqrt(9 + 16) = sqrt25 = 5`
|z2| = |4 + 3i| = `sqrt(4^2 + 3^2) = sqrt(16 + 9) = 5`
z1 ≠ z2
इसलिए, यदि |z1| = |z2| है, तो यह आवश्यक नहीं है कि z1 = z2 हो।
APPEARS IN
संबंधित प्रश्न
सम्मिश्र संख्याओं में प्रत्येक को ध्रुवीय रूप में रूपांतरित कीजिए:
1 – i
सम्मिश्र संख्याओं में प्रत्येक को ध्रुवीय रूप में रूपांतरित कीजिए:
-1 + i
निम्नलिखित को ध्रुवीय रूप में परिवर्तित कीजिए:
`(1+7i)/(2-i)^2`
मान ज्ञात कीजिए: (1 + i)6 + (1 – i)3
यदि `(x + iy)^(1/3)` = a + ib, जहाँ y, a, b ∈ R हे तो दर्शाइए कि `x/a - y/b` = –2(a2 + b2)
यदि z1, z2, z3 ऐसी सम्मिश्र संख्याएँ हैं कि `|z_1| = |z_2| = |z_3| = |1/z_1 + 1/z_2 + 1/z_3|` = 1, तो |z1 + z2 + z3| का मान ज्ञात कीजिए।
वे बिंदु निर्धारित कीजिए, जिनके लिए 3 < |z| < 4
`(-sqrt-1)^{4n - 3}` का मान ______ है, जहाँ n ∈ N
बताइए कि निम्नलिखित कथन सत्य है या असत्य है।
सम्मिश्र संख्या cosθ + isinθ, θ के किसी मान के लिए शून्य हो सकती है।
स्तंभ A और स्तंभ B के कथनों का सही मिलान कीजिए:
स्तंभ A | स्तंभ B |
(a) 1 + i2 + i4 + i6 + ... i20 का मान है | (i) शुद्धत: काल्पनिक सम्मिश्र संख्या |
(b) `i^(-1097)` का मान है | (ii) शुद्धत: वास्तविक सम्मिश्र संख्या |
(c) 1 + i का संयुग्मी किस चतुर्थांश में स्थित है | (iii) द्वितीय चतुर्थांश |
(d) `(1 + 2i)/(1 - i)` किस चतुर्थांश में स्थित है | (iv) चौथा चतुर्थांश |
(e) यदि a, b, c ∈ R और b2 - 4ac < 0 तब समीकरण ax2 + bx + c = 0 के मूल अवास्तविक एवं सम्मिश्र हैं | (v) संयुग्मी युग्मों में घटित नहीं हो सकते हैं |
(f) यदि a, b, c ∈ R और b2 – 4ac > 0 एवं b2 – 4ac एक पूर्ण वर्ग है, तो समीकरण ax2 + bx + c = 0 के मूल हैं | (vi) संयुग्मी युग्मों में घटित हो सकते हैं |
1 - i के कोणांक का मुख्य मान क्या है?
z का बिंदु पथ क्या होगा, यदि z – 2 – 3i का कोणांक `pi/4` है?
यदि सम्मिश्र संख्या z = x + iy प्रतिबंध |z + 1| = 1 को संतुष्ट करती है, तो z स्थित है:
समीकरण |z + 1 - i| = |z - 1 + i| निरूपित करता है एक
समीकरण z2 + |z|2 = 0, z ≠ 0 के हलों की संख्या है
यदि `((1 + i)/(1 - i))^3 - ((1 - i)/(1 + i))^3` = x + iy, तो (x, y) ज्ञात कीजिए।
यदि `((1 - i)/(1 + i))^100` = a + ib है, तो (a, b) ज्ञात कीजिए।
यदि (1 + i)z = `(1 - i)barz` है, तो दर्शाइए कि z = `-ibarz`
समीकरण `z + sqrt(2) |(z + 1)| + i` = 0 को संतुष्ट करने वाली सम्मिश्र संख्या ज्ञात कीजिए।
श्रेणी i + i2 + i3 + .... का 1000 पदों तक का योग ______ है।
यदि z1 और z2 ऐसी सम्मिश्र संख्याएँ हैं कि z1 + z2 एक वास्तविक संख्या है, तो z2 = ______
यदि `|(z - 5i)/(z + 5i)|` = 1, तो z कहाँ स्थित है?
मान लीजिए कि x, y ∈ R, तो x + iy एक अवास्तविक सम्मिश्र संख्या है, यदि
प्रतिबंध `|(i + z)/(i - z)| = 1` को संतुष्ट करने वाली सम्मिश्र संख्या स्थित होगी:
यदि z एक सम्मिश्र संख्या है, तो