Advertisements
Advertisements
प्रश्न
श्रेणी i + i2 + i3 + .... का 1000 पदों तक का योग ______ है।
उत्तर
श्रेणी i + i2 + i3 + .... का 1000 पदों तक का योग 0 है।
स्पष्टीकरण:
सरलीकृत करे,
⇒ i + i2 + i3 + ... + i1000 = 0
⇒ `[sum_(n = 1)^100 i^n = 0]`
इसलिए, i + i2 + i3 + ... का 1000 पदों तक का योग 0 है।
APPEARS IN
संबंधित प्रश्न
`(1/(1-4i) - 2/(1+i))((3-4i)/(5+i))` को मानक रूप में परिवर्तित कीजिए।
निम्नलिखित को ध्रुवीय रूप में परिवर्तित कीजिए:
`(1+7i)/(2-i)^2`
मान ज्ञात कीजिए: (1 + i)6 + (1 – i)3
'a' का वास्तविक मान जिसके लिए 3i3 – 2ai2 + (1 – a)i + 5 वास्तविक है ______ होगा।
बताइए कि निम्नलिखित कथन सत्य है या असत्य है।
सम्मिश्र संख्या cosθ + isinθ, θ के किसी मान के लिए शून्य हो सकती है।
`(i^(4n + 1) -i^(4n - 1))/2` का क्या मान है?
1 - i के कोणांक का मुख्य मान क्या है?
z का बिंदु पथ क्या होगा, यदि z – 2 – 3i का कोणांक `pi/4` है?
1 + i2 + i4 + i6 + ... + i2n है:
यदि सम्मिश्र संख्या z = x + iy प्रतिबंध |z + 1| = 1 को संतुष्ट करती है, तो z स्थित है:
समीकरण z2 + |z|2 = 0, z ≠ 0 के हलों की संख्या है
`sum_(n = 1)^13 (i^n + i^(n + 1))` का मान ज्ञात कीजिए, जहाँ n ∈ N
यदि `((1 - i)/(1 + i))^100` = a + ib है, तो (a, b) ज्ञात कीजिए।
यदि (1 + i)z = `(1 - i)barz` है, तो दर्शाइए कि z = `-ibarz`
यदि `(barz + 2)/(barz - 1)` का वास्तविक भाग 4 है, तो दशाइए कि z को निरूपित करने वाले बिंदु का बिंदु पथ सम्मिश्र तल में एक वृत्त है।
यदि |z1| = 1(z1 ≠ –1) और z2 = `(z_1 - 1)/(z_1 + 1)`, तो दर्शाइए कि z2 का वास्तविक भाग शून्य है।
यदि |z1| = |z2| = ... = |zn| = 1, तो दर्शाइए कि |z1 + z2 + z3 + ... + zn| = `|1/z_1 + 1/z_2 + 1/z_3 + ... + 1/z_n|`
यदि `|(z - 2)/(z + 2)| = pi/6` है, तो z का बिंदु पथ ______ है।
बताइए कि निम्नलिखित कथन सत्य है या असत्य है।
एक शून्येत्तर सम्मिश्र संख्या का −i से गुणन उस सम्मिश्र संख्या द्वारा निरूपित बिंदु का मूल बिंदु के परित वामावर्त दिशा में एक समकोण पर घूर्णन कर देता है।
बताइए कि निम्नलिखित कथन सत्य है या असत्य है।
किसी भी सम्मिश्र संख्या z के लिए, |z| + |z – 1| का कम से कम मान 1 है।
बताइए कि निम्नलिखित कथन सत्य है या असत्य है।
|z – 1| = |z – i| को निरूपित करने वाला बिंदु पथ (1, 0) और (0, 1) को मिलाने वाली रेखा पर एक लंब रेखा है।
यदि |z1| = |z2| तब क्या z1 = z2 होना आवश्यक है?
किन्हीं दो सम्मिश्र संख्याओं z1 तथा z2 के लिए, निम्नलिखित में से कौन सही है?
यदि सम्मिश्र संख्या 2 − i से निरूपित बिंदु को मूलबिंदु के प्रति दक्षिणावर्त दिशा में एक कोण `π/2` पर घुमाया जाए, तो उस बिंदु की नयी स्थिति होगी
मान लीजिए कि x, y ∈ R, तो x + iy एक अवास्तविक सम्मिश्र संख्या है, यदि
यदि a + ib = c + id, तो
प्रतिबंध `|(i + z)/(i - z)| = 1` को संतुष्ट करने वाली सम्मिश्र संख्या स्थित होगी:
यदि f(z) = `(7 - z)/(1 - z^2)` जहाँ z = 1 + 2i, तो |f(z)| है