मराठी

श्रेणी i + i2 + i3 + .... का 1000 पदों तक का योग ______ है। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

श्रेणी i + i2 + i3 + .... का 1000 पदों तक का योग ______ है।

रिकाम्या जागा भरा

उत्तर

श्रेणी i + i2 + i3 + .... का 1000 पदों तक का योग 0 है।

स्पष्टीकरण:

सरलीकृत करे,

⇒ i + i2 + i3 + ... + i1000 = 0

⇒ `[sum_(n = 1)^100 i^n = 0]`

इसलिए, i + i2 + i3 + ... का 1000 पदों तक का योग 0 है।

shaalaa.com
सम्मिश्र संख्याओं का बीजगणित
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: सम्मिश्र संख्याएँ और द्विघात समीकरण - प्रश्नावली [पृष्ठ ९३]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 11
पाठ 5 सम्मिश्र संख्याएँ और द्विघात समीकरण
प्रश्नावली | Q 25. (iv) | पृष्ठ ९३

संबंधित प्रश्‍न

सम्मिश्र संख्या का गुणात्मक प्रतिलोम ज्ञात कीजिए:

- i


निम्नलिखित व्यंजक को a + ib के रूप में व्यक्त कीजिए:

`((3 + isqrt5)(3 - isqrt5))/((sqrt3 + sqrt2i)-(sqrt3 - isqrt2))`


सम्मिश्र संख्याओं में प्रत्येक को ध्रुवीय रूप में रूपांतरित कीजिए:

-1 + i


निम्नलिखित को ध्रुवीय रूप में परिवर्तित कीजिए:

`(1+3i)/(1-2i)`


यदि α और β भिन्न सम्मिश्र संख्याएँ हैं जहाँ |β| = 1, तब `|(beta - alpha)/(1-baralphabeta)|`  का मान ज्ञात कीजिए।


वे बिंदु निर्धारित कीजिए, जिनके लिए 3 < |z| < 4


'a' का वास्तविक मान जिसके लिए 3i3 – 2ai2 + (1 – a)i + 5 वास्तविक है ______ होगा।


`(-sqrt-1)^{4n  - 3}` का मान ______ है, जहाँ n ∈ N


यदि (2 + i) (2 + 2i) (2 + 3i) ... (2 + ni) = x + iy तो 5.8.13 ... (4 + n2) = ______


बताइए कि निम्नलिखित कथन सत्य है या असत्य है।

सम्मिश्र संख्या z, जिसके लिए |z + 1| < |z - 1| है, को निरूपित करने वाले बिंदु एक वृत्त के अभ्यंतर में स्थित होते हैं।


यदि सम्मिश्र संख्या z = x + iy प्रतिबंध |z + 1| = 1 को संतुष्ट करती है, तो z स्थित है:


समीकरण |z + 1 - i| = |z - 1 + i| निरूपित करता है एक 


समीकरण z2 + |z|2 = 0, z ≠ 0 के हलों की संख्या है


एक धनात्मक पूर्णांक n के लिए, `(1−i)^n(1−1/i)^n` का मान ज्ञात कीजिए।


यदि `((1 + i)/(1 - i))^3 - ((1 - i)/(1 + i))^3` = x + iy, तो (x, y) ज्ञात कीजिए।


यदि `((1 - i)/(1 + i))^100` = a + ib है, तो (a, b) ज्ञात कीजिए।


यदि `(barz + 2)/(barz - 1)` का वास्तविक भाग 4 है, तो दशाइए कि z को निरूपित करने वाले बिंदु का बिंदु पथ सम्मिश्र तल में एक वृत्त है।


समीकरण |z| = z + 1 + 2i को हल कीजिए।


यदि |z + 1| = z + 2(1 + i) है, तो z ज्ञात कीजिए।


यदि `(z - 1)/(z + 1)` एक शुद्धत: काल्पनिक संख्या है (z ≠ −1), तो |z| का मान ज्ञात कीजिए।


समीकरण `z + sqrt(2) |(z + 1)| + i` = 0 को संतुष्ट करने वाली सम्मिश्र संख्या ज्ञात कीजिए।


किन्हीं दो सम्मिश्र संख्याओं z1, z2 और किन्हीं वास्तविक संख्याओं a, b, के लिए, |az1 – bz2|2 + |bz1 + az2|2 = ______


`sqrt(-25) xx sqrt(-9)` का मान ______ है।


संख्या `(1 - i)^3/(1 - i^3)` ______ के बराबर है।


यदि z1 और z2 ऐसी सम्मिश्र संख्याएँ हैं कि z1 + z2 एक वास्तविक संख्या है, तो z2 = ______


α का वह वास्तविक मान, जिसके लिए व्यंजक `(1 - i sin alpha)/(1 + 2i sin alpha)` शुद्धत: वास्तविक है, निम्नलिखित में से कौन सा है:

x का एक वास्तविक मान समीकरण `((3 - 4ix)/(3 + 4ix))` = α − iβ(α, β ∈ R) को संतुष्ट करता है, यदि α2 + β2 = ______


मान लीजिए कि x, y ∈ R, तो x + iy एक अवास्तविक सम्मिश्र संख्या है, यदि


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×