मराठी

निम्नलिखित को ध्रुवीय रूप में परिवर्तित कीजिए: 1+3i1-2i - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

निम्नलिखित को ध्रुवीय रूप में परिवर्तित कीजिए:

`(1+3i)/(1-2i)`

बेरीज

उत्तर

मान लिया 

`z  = (1+3i)/(1-2i)  =  (1 + 3i)/(1 - 2i) xx (1 + 2i)/(1 + 2i)`

= `(1 + 6i^2 + 2i + 3i)/(1 - 4i^2)`

= `(1 - 6 + 5i)/(1 + 4) = (-5)/5  + 5/5i` 

= -1 + i

भाग (i) के अनुसार - 1 + i = `sqrt2 (cos  (3pi)/4  + .i sin  (3pi)/4)`

अतः का ध्रुवीय रूप, `(1 + 3i)/(1 - 2i)  = sqrt2 (cos  (3pi)/4  + .i sin  (3pi)/4)`

shaalaa.com
सम्मिश्र संख्याओं का बीजगणित
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: सम्मिश्र संख्याएँ और द्विघातीय समीकरण - अध्याय 5 पर विविध प्रश्नावली [पृष्ठ १२०]

APPEARS IN

एनसीईआरटी Mathematics [Hindi] Class 11
पाठ 5 सम्मिश्र संख्याएँ और द्विघातीय समीकरण
अध्याय 5 पर विविध प्रश्नावली | Q 5. (ii) | पृष्ठ १२०

संबंधित प्रश्‍न

सम्मिश्र संख्या का गुणात्मक प्रतिलोम ज्ञात कीजिए:

`sqrt5  + 3i`


सम्मिश्र संख्याओं में प्रत्येक को ध्रुवीय रूप में रूपांतरित कीजिए:

1 – i


यदि `x  –  iy = sqrt((a-ib)/(c - id))` , तो सिद्ध कीजिए की `(x^2 + y^2) = (a^2 + b^2)/(c^2 + d^2)`


'a' का वास्तविक मान जिसके लिए 3i3 – 2ai2 + (1 – a)i + 5 वास्तविक है ______ होगा।


यदि (2 + i) (2 + 2i) (2 + 3i) ... (2 + ni) = x + iy तो 5.8.13 ... (4 + n2) = ______


स्तंभ A और स्तंभ B के कथनों का सही मिलान कीजिए:

स्तंभ A स्तंभ B
(a) 1 + i2 + i4 + i6 + ... i20 का मान है (i) शुद्धत: काल्पनिक सम्मिश्र संख्या
(b) `i^(-1097)` का मान है (ii) शुद्धत: वास्तविक सम्मिश्र संख्या
(c) 1 + i का संयुग्मी किस चतुर्थांश में स्थित है (iii) द्वितीय चतुर्थांश
(d) `(1 + 2i)/(1 - i)` किस चतुर्थांश में स्थित है (iv) चौथा चतुर्थांश
(e) यदि a, b, c ∈ R और b2 - 4ac < 0 तब समीकरण ax2 + bx + c = 0 के मूल अवास्तविक एवं सम्मिश्र हैं (v) संयुग्मी युग्मों में घटित नहीं हो सकते हैं
(f) यदि a, b, c ∈ R और b2 – 4ac > 0 एवं b2 – 4ac एक पूर्ण वर्ग है, तो समीकरण ax2 + bx + c = 0 के मूल हैं (vi) संयुग्मी युग्मों में घटित हो सकते हैं

1 + i2 + i4 + i6 + ... + i2n है: 


सम्मिश्र संख्याओं z, –iz और z + iz द्वारा सम्मिश्र तल में बनाये गये त्रिभुज का क्षेत्रफल है।


यदि `((1 - i)/(1 + i))^100` = a + ib है, तो (a, b) ज्ञात कीजिए।


यदि `(barz + 2)/(barz - 1)` का वास्तविक भाग 4 है, तो दशाइए कि z को निरूपित करने वाले बिंदु का बिंदु पथ सम्मिश्र तल में एक वृत्त है।


यदि |z + 1| = z + 2(1 + i) है, तो z ज्ञात कीजिए।


यदि |z1| = |z2| = ... = |zn| = 1, तो दर्शाइए कि |z1 + z2 + z3 + ... + zn| = `|1/z_1 + 1/z_2 + 1/z_3 + ... + 1/z_n|`


समीकरण `z + sqrt(2) |(z + 1)| + i` = 0 को संतुष्ट करने वाली सम्मिश्र संख्या ज्ञात कीजिए।


संख्या `(1 - i)^3/(1 - i^3)` ______ के बराबर है।


यदि |z + 4| ≤ 3, तो |z + 1| के अधिकतम और न्यूनतम मान ______ एवं ______ हैं।


यदि `|(z - 2)/(z + 2)| = pi/6` है, तो z का बिंदु पथ ______ है।


बताइए कि निम्नलिखित कथन सत्य है या असत्य है।

एक शून्येत्तर सम्मिश्र संख्या का −i से गुणन उस सम्मिश्र संख्या द्वारा निरूपित बिंदु का मूल बिंदु के परित वामावर्त दिशा में एक समकोण पर घूर्णन कर देता है।


बताइए कि निम्नलिखित कथन सत्य है या असत्य है।

|z – 1| = |z – i| को निरूपित करने वाला बिंदु पथ (1, 0) और (0, 1) को मिलाने वाली रेखा पर एक लंब रेखा है।


यदि |z1| = |z2| तब क्या z1 = z2 होना आवश्यक है?


यदि `|(z - 5i)/(z + 5i)|` = 1, तो z कहाँ स्थित है?


(z + 3) (`overlinez` + 3) का मान निम्नलिखित में से किसके समतुल्य है


यदि सम्मिश्र संख्या 2 − i से निरूपित बिंदु को मूलबिंदु के प्रति दक्षिणावर्त दिशा में एक कोण `π/2` पर घुमाया जाए, तो उस बिंदु की नयी स्थिति होगी


मान लीजिए कि x, y ∈ R, तो x + iy एक अवास्तविक सम्मिश्र संख्या है, यदि


प्रतिबंध `|(i + z)/(i - z)| = 1` को संतुष्ट करने वाली सम्मिश्र संख्या स्थित होगी:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×