Advertisements
Advertisements
प्रश्न
सम्मिश्र संख्याओं में प्रत्येक को ध्रुवीय रूप में रूपांतरित कीजिए:
1 – i
उत्तर
मान लीजिए z = 1 – i = r(cos θ + i sinθ)
∴ r cos θ = 1 तथा rsin θ = -1
वर्ग करके जोड़ने पर,
r2 cos2 θ + r2 sin2θ = 1 + 1 = 2
या r2 (cos2θ + sin2θ) = 2
या r2 = 2 या r = – `sqrt2`
अब cos θ धनात्मक है और sin θ ऋणात्मक है।
∴ θ चौथे चतुर्थांश में है।
tan θ = `(-1)/1 = -1 = tan (2pi - pi/4)`
= tan `(-pi/4)`
= θ = - `pi/4`
अतः z का ध्रुवीय रूप = `sqrt2 (cos (-pi)/4 + isin (-pi)/4)`
APPEARS IN
संबंधित प्रश्न
निम्नलिखित व्यंजक को a + ib के रूप में व्यक्त कीजिए:
`((3 + isqrt5)(3 - isqrt5))/((sqrt3 + sqrt2i)-(sqrt3 - isqrt2))`
निम्नलिखित को ध्रुवीय रूप में परिवर्तित कीजिए:
`(1+3i)/(1-2i)`
यदि α और β भिन्न सम्मिश्र संख्याएँ हैं जहाँ |β| = 1, तब `|(beta - alpha)/(1-baralphabeta)|` का मान ज्ञात कीजिए।
यदि (a + ib )(c + id) (e + if) (g + ih) = A + iB है तो दर्शाइए कि (a2 + b2) (c2 + d2) (e2 + f2) (g2 + h2) = A2 + B2
मान ज्ञात कीजिए: (1 + i)6 + (1 – i)3
यदि `(x + iy)^(1/3)` = a + ib, जहाँ y, a, b ∈ R हे तो दर्शाइए कि `x/a - y/b` = –2(a2 + b2)
वे बिंदु निर्धारित कीजिए, जिनके लिए 3 < |z| < 4
बताइए कि निम्नलिखित कथन सत्य है या असत्य है।
सम्मिश्र संख्या z, जिसके लिए |z + 1| < |z - 1| है, को निरूपित करने वाले बिंदु एक वृत्त के अभ्यंतर में स्थित होते हैं।
बताइए कि निम्नलिखित कथन सत्य है या असत्य है।
यदि n एक धनात्मक पूर्णाक है, तो in + (i)n+1 + (i)n+2 + (i)n+3 का मान शून्य है।
`(i^(4n + 1) -i^(4n - 1))/2` का क्या मान है?
वह कौन-सा न्यूनतम धनात्मक पूर्णांक n हैं, जिसके लिए (1 + i)2n = (1 – i)2n?
स्तंभ A और स्तंभ B के कथनों का सही मिलान कीजिए:
स्तंभ A | स्तंभ B |
(a) 1 + i2 + i4 + i6 + ... i20 का मान है | (i) शुद्धत: काल्पनिक सम्मिश्र संख्या |
(b) `i^(-1097)` का मान है | (ii) शुद्धत: वास्तविक सम्मिश्र संख्या |
(c) 1 + i का संयुग्मी किस चतुर्थांश में स्थित है | (iii) द्वितीय चतुर्थांश |
(d) `(1 + 2i)/(1 - i)` किस चतुर्थांश में स्थित है | (iv) चौथा चतुर्थांश |
(e) यदि a, b, c ∈ R और b2 - 4ac < 0 तब समीकरण ax2 + bx + c = 0 के मूल अवास्तविक एवं सम्मिश्र हैं | (v) संयुग्मी युग्मों में घटित नहीं हो सकते हैं |
(f) यदि a, b, c ∈ R और b2 – 4ac > 0 एवं b2 – 4ac एक पूर्ण वर्ग है, तो समीकरण ax2 + bx + c = 0 के मूल हैं | (vi) संयुग्मी युग्मों में घटित हो सकते हैं |
1 - i के कोणांक का मुख्य मान क्या है?
z का बिंदु पथ क्या होगा, यदि z – 2 – 3i का कोणांक `pi/4` है?
यदि `(1 + i)^2/(2 - i)` = x + iy, तो x + y ज्ञात कीजिए।
यदि |z + 1| = z + 2(1 + i) है, तो z ज्ञात कीजिए।
यदि `(z - 1)/(z + 1)` एक शुद्धत: काल्पनिक संख्या है (z ≠ −1), तो |z| का मान ज्ञात कीजिए।
यदि |z1| = 1(z1 ≠ –1) और z2 = `(z_1 - 1)/(z_1 + 1)`, तो दर्शाइए कि z2 का वास्तविक भाग शून्य है।
यदि |z1| = |z2| = ... = |zn| = 1, तो दर्शाइए कि |z1 + z2 + z3 + ... + zn| = `|1/z_1 + 1/z_2 + 1/z_3 + ... + 1/z_n|`
समीकरण `z + sqrt(2) |(z + 1)| + i` = 0 को संतुष्ट करने वाली सम्मिश्र संख्या ज्ञात कीजिए।
किन्हीं दो सम्मिश्र संख्याओं z1, z2 और किन्हीं वास्तविक संख्याओं a, b, के लिए, |az1 – bz2|2 + |bz1 + az2|2 = ______
श्रेणी i + i2 + i3 + .... का 1000 पदों तक का योग ______ है।
यदि |z + 4| ≤ 3, तो |z + 1| के अधिकतम और न्यूनतम मान ______ एवं ______ हैं।
बताइए कि निम्नलिखित कथन सत्य है या असत्य है।
असमिका |z – 4| < |z – 2| असमिका x > 3 से प्रदत्त क्षेत्र को निरूपित करती है।
यदि |z1| = |z2| तब क्या z1 = z2 होना आवश्यक है?
किन्हीं दो सम्मिश्र संख्याओं z1 तथा z2 के लिए, निम्नलिखित में से कौन सही है?
यदि f(z) = `(7 - z)/(1 - z^2)` जहाँ z = 1 + 2i, तो |f(z)| है