मराठी

सम्मिश्र संख्याओं में प्रत्येक को ध्रुवीय रूप में रूपांतरित कीजिए: 1 – i - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

सम्मिश्र संख्याओं में प्रत्येक को ध्रुवीय रूप में रूपांतरित कीजिए:

1 – i

बेरीज

उत्तर

मान लीजिए z = 1 – i = r(cos θ + i sinθ)

∴ r cos θ = 1 तथा rsin θ = -1

वर्ग करके जोड़ने पर,

r2 cos2 θ + r2 sin2θ = 1 + 1 = 2

या r2 (cos2θ + sin2θ) = 2

या r2 = 2 या r = – `sqrt2`

अब cos θ धनात्मक है और sin θ ऋणात्मक है।

∴ θ चौथे चतुर्थांश में है।

tan θ = `(-1)/1 = -1 = tan (2pi  - pi/4)`

= tan `(-pi/4)`

= θ = -  `pi/4`

अतः z का ध्रुवीय रूप = `sqrt2 (cos  (-pi)/4 + isin  (-pi)/4)`

shaalaa.com
सम्मिश्र संख्याओं का बीजगणित
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: सम्मिश्र संख्याएँ और द्विघातीय समीकरण - प्रश्नावली 5.2 [पृष्ठ ११६]

APPEARS IN

एनसीईआरटी Mathematics [Hindi] Class 11
पाठ 5 सम्मिश्र संख्याएँ और द्विघातीय समीकरण
प्रश्नावली 5.2 | Q 3. | पृष्ठ ११६

संबंधित प्रश्‍न

निम्नलिखित व्यंजक को a + ib के रूप में व्यक्त कीजिए:

`((3 + isqrt5)(3 - isqrt5))/((sqrt3 + sqrt2i)-(sqrt3 - isqrt2))`


निम्नलिखित को ध्रुवीय रूप में परिवर्तित कीजिए:

`(1+3i)/(1-2i)`


यदि α और β भिन्न सम्मिश्र संख्याएँ हैं जहाँ |β| = 1, तब `|(beta - alpha)/(1-baralphabeta)|`  का मान ज्ञात कीजिए।


यदि (a + ib )(c + id) (e + if) (g + ih) = A + iB है तो दर्शाइए कि (a2 + b2) (c2 + d2) (e2 + f2) (g2 + h2) = A2 + B2


मान ज्ञात कीजिए: (1 + i)6 + (1 – i)3


यदि `(x + iy)^(1/3)` = a + ib, जहाँ y, a, b ∈ R हे तो दर्शाइए कि `x/a - y/b` = –2(a2 + b2)


वे बिंदु निर्धारित कीजिए, जिनके लिए 3 < |z| < 4


बताइए कि निम्नलिखित कथन सत्य है या असत्य है।

सम्मिश्र संख्या z, जिसके लिए |z + 1| < |z - 1| है, को निरूपित करने वाले बिंदु एक वृत्त के अभ्यंतर में स्थित होते हैं।


बताइए कि निम्नलिखित कथन सत्य है या असत्य है।

यदि n एक धनात्मक पूर्णाक है, तो in + (i)n+1 + (i)n+2 + (i)n+3 का मान शून्य है।


`(i^(4n + 1) -i^(4n - 1))/2` का क्या मान है?


वह कौन-सा न्यूनतम धनात्मक पूर्णांक n हैं, जिसके लिए (1 + i)2n = (1 – i)2n?


स्तंभ A और स्तंभ B के कथनों का सही मिलान कीजिए:

स्तंभ A स्तंभ B
(a) 1 + i2 + i4 + i6 + ... i20 का मान है (i) शुद्धत: काल्पनिक सम्मिश्र संख्या
(b) `i^(-1097)` का मान है (ii) शुद्धत: वास्तविक सम्मिश्र संख्या
(c) 1 + i का संयुग्मी किस चतुर्थांश में स्थित है (iii) द्वितीय चतुर्थांश
(d) `(1 + 2i)/(1 - i)` किस चतुर्थांश में स्थित है (iv) चौथा चतुर्थांश
(e) यदि a, b, c ∈ R और b2 - 4ac < 0 तब समीकरण ax2 + bx + c = 0 के मूल अवास्तविक एवं सम्मिश्र हैं (v) संयुग्मी युग्मों में घटित नहीं हो सकते हैं
(f) यदि a, b, c ∈ R और b2 – 4ac > 0 एवं b2 – 4ac एक पूर्ण वर्ग है, तो समीकरण ax2 + bx + c = 0 के मूल हैं (vi) संयुग्मी युग्मों में घटित हो सकते हैं

1 - i के कोणांक का मुख्य मान क्या है?


z का बिंदु पथ क्या होगा, यदि z – 2 – 3i का कोणांक `pi/4` है?


यदि `(1 + i)^2/(2 - i)` = x + iy, तो x + y ज्ञात कीजिए।


यदि |z + 1| = z + 2(1 + i) है, तो z ज्ञात कीजिए।


यदि `(z - 1)/(z + 1)` एक शुद्धत: काल्पनिक संख्या है (z ≠ −1), तो |z| का मान ज्ञात कीजिए।


यदि |z1| = 1(z1 ≠ –1) और z2 = `(z_1 - 1)/(z_1 + 1)`, तो दर्शाइए कि z2 का वास्तविक भाग शून्य है।


यदि |z1| = |z2| = ... = |zn| = 1, तो दर्शाइए कि |z1 + z2 + z3 + ... + zn| = `|1/z_1 + 1/z_2 + 1/z_3 + ... + 1/z_n|`


समीकरण `z + sqrt(2) |(z + 1)| + i` = 0 को संतुष्ट करने वाली सम्मिश्र संख्या ज्ञात कीजिए।


किन्हीं दो सम्मिश्र संख्याओं z1, z2 और किन्हीं वास्तविक संख्याओं a, b, के लिए, |az1 – bz2|2 + |bz1 + az2|2 = ______


श्रेणी i + i2 + i3 + .... का 1000 पदों तक का योग ______ है।


यदि |z + 4| ≤ 3, तो |z + 1| के अधिकतम और न्यूनतम मान ______ एवं ______ हैं।


बताइए कि निम्नलिखित कथन सत्य है या असत्य है।

असमिका |z – 4| < |z – 2| असमिका x > 3 से प्रदत्त क्षेत्र को निरूपित करती है।


यदि |z1| = |z2| तब क्या z1 = z2 होना आवश्यक है?


α का वह वास्तविक मान, जिसके लिए व्यंजक `(1 - i sin alpha)/(1 + 2i sin alpha)` शुद्धत: वास्तविक है, निम्नलिखित में से कौन सा है:

किन्हीं दो सम्मिश्र संख्याओं z1 तथा z2 के लिए, निम्नलिखित में से कौन सही है?


यदि f(z) = `(7 - z)/(1 - z^2)` जहाँ z = 1 + 2i, तो |f(z)| है


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×